
ee tecnica

eR a Sistemi di
sviluppo |. |

| |
_ Documentazione

Manualistica ed
editoria specializzata

Gin: |
ULISSE srl >
Servizio. Distribuzione Apple |
Via Pacini, 22..

-20131 Milano”
- Tel. (02) 2367783-2367406

. -su licenza esclusiva: `

Appie Computer S.p.A.

Macintosh
Programmer's

-= Workshop
Reference

- Version 1.0

MP W00

pole,

Macintosh Programmer’s Workshop Reference

October 3, 1986

Apple Technical Publications

This document contains preliminary information. It does not
l include

* final editorial corrections
. final art work
ean index.

It may not include final technical changes.

fo

p

APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be
copied, in whole or part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software.
The same proprietary and
copyright notices must be
affixed to any permitted copies
as were affixed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc., 1985,
1986
20525 Mariani. Ave.
Cupertino, California 95014
(408) 996-1010

Pascal Compiler © 1982, 1983,.
1984, 1985, 1986 Apple
Computer, Inc., © 1981 SVS

Ine,

C Compiler © 1984, 1985, 1986
Green Hills Software, Inc.

Apple, the Apple logo,
AppleTalk, LaserWriter, and
Lisa are registered trademarks of
Apple Computer, Inc.

ImageWriter, MacDraw,

Macintosh, MacPaint,
MacWrite, and Switcher are
trademarks of Apple Computer,
Inc.

Motorola is a trademark of
Motorola, Inc.

UNIX is a trademark of AT&T

Bell. Laboratories.

Simultaneously published in the
United States and Canada.

MPW SAMPLE PROGRAMS

Apple Computer, Inc. grants
users of the Macintosh
Programmer’s Workshop a
royalty-free license to
incorporate Macintosh
Programmer’s Workshop
sample programs into their own
programs, or to modify the
sample programs for use in
their own programs, provided
such use is exclusively on Apple
computers. For any modified
Macintosh Programmer’s
Workshop sample program,
you may add your own
copyright notice alongside the
Apple copyright notice.

Contents

Figures and Tables x

Preface 3 xvii

Power tools for Macintosh programmers x
What you'll need x i ;

Hardware requirements x
System Folder requirements x
Pascal and C requirements x
Documentation x

About this ranual x
Syntax notation x

System Overview we !

A road map x
The MPW Shell x

File handling commands x

Editing commands x
Structured commands x
Other built-in commands x

MPW tools x

Assembler: x
Pascal tools x
C Compiler x

Linker x

Make x
Resource Compiler and Decompiler x

Conversion tools x
Applications x

ResEdit x

Debugger x

Special command files x
Sample program files x
System Folder x

aa

a É `

ae.

Pa

Chapter 1

Chapter 2

Overview of MPW files and directories x

Getting Started sx 13

Installing the system x

HD-20 installation x

Macintosh XL installation x
Installing the system on 800K disks

Starting up x ` .
Editing x

Giving commands x

The Enter key x
Executing several commands at once x
Terminating a command x

The Help command x
Fie Handling commands x
File and window names x

Selection specifications x
Directories and pathnames x
Command search path x
Changing directories x

An aside: the Alias command x
Pathname variables x
Wildcards (filename generation) x

Building a program x

Assembling and compiling x
Linking x
Automating the build process with Make x

Running an application x

Basic Editing se 33,

Features x

File format. x

Menu commands x

Apple menu x
File menu x

Edit menu x

Find menu x

Format menu x

Windows menu x

User-defined menus x
Editing with the command language x

vi

Chapter 3 Using the Command Language xx 45

Overview x
Types of commands x

Entering and executing commands x

Structure of a command x
Command name x
Parameters x

Command terminators x

Comments x
Simple versus structured commands x

Running an application outside the Shell environment x

Command files x
Special command files x

The Startup and UserStartup file x
Suspend,Resume, and Quit x

Command aliases x
Executable error messages x

Variables x
Predefined variables x
Variables defined in the Startup file x

Parameters to command files x
Defining and. redefining variables x

Exporting variables x
Command substitution x

Quoting special characters x
How commands are interpreted x
Structured commands x

Control loops x
Processing command parameters x

Expressions xX

Filename generation x
Redirecting input and output x

Standard input x
Terminating input with Command-enter x

Standard output x
Diagnostic output x

Pseudo-filenames x

Defining your own menu commands x

Sample command files x
“Add Menu as Group” x

Chapter4 Advanced Editing + 21

Editing Commands x

Selections xx

Chapter 5

Chapter 6

Current selection x
Selection by line number x

Position x

Extending a selection x

Pattern x :

Pattern Matching (Using Regular Expressions) x
Character expressions x
“Wildcard” operators x

Repeated Instances of regular expressions x
Tagging regular expressions with the ® operator x
Matching a pattern at the beginning or end of a line x
Inserting invisible characters x
Note on forward and backward searches x

Some Useful Examples x
Transfering DumpObj output x
Finding a whole word x

Editing Resources With ResEdit x» 1%
About ResEdit x

Uses x

Extensibility x

Using ResEdit x

Working with files x
Working within a file x
Working within a resource type x
Editing individual resources x

'CURS' resources x

'DITL' resources x

"FONT resources x

‘ICN#' resources x
Creating a resource template x

Resource Compiler and Decompiler see IHH

About the Resource Compiler and Decompiler x
Resource Decompiler x
Standard type declaration files x

Using Rez and DeRez x
Structure of a resource description file x

Sample resource description file x
Resource description statement x

Syntax notation x

Special terms x

Include x

Syntax x

Vii

Resource Attributes x

Read x
Syntax x
Description x

Data x

Syntax. x
Description x

Type x

Syntax x
Description x
Data-type specifications x

Numeric types x

Boolean type x
Character type x

String types x
Point and rectangles x
Fill and align types x
Fill specifications x
Align specifications x

Array type x
Switch type x

Resource x

Syntax x

Description x

Data statements x

Switch data x
Array data x

Sample resource definition x
Symbolic names x

Preprocessor directives x
Variable definitions x

Include directives x
If-Then-Else processing x

Resource description syntax x
Numbers and literals x
Expressions x

Variables x

Surings x
Escape characters x

Chapter7 Building a Program 144

Overview of the build process x

Structure of a Macintosh application x

Linking x
What to link with x

vill

Chapter 8

Linking together code written in different languages x
File types and creators x
Putting together an MPW tool x

Putting together a desk accessory or driver x

Linking a desk.accessory or driver x
The desk accessory resource file x

Using Make x

Format of a makeFile x
Dependency rules x

Double-f dependency rules x
Default rules x

Built-in default rules x
Directory dependency rules x

Variables in makefiles x
Shell variables x
Defining variables within a makefile x
Built-in Make variables x

Comments x

Quoting x
Executing Make's output x

Debugging makefiles x
An example x

More about linking x
Linker functions x
Segmentation x

Setting resource attributes x
Controlling the numbering of code resources x
Resolving symbol definitions x

Multiple external symbol definitions x
Unresolved external symbols x

Linker location map x
Optimizing your links x

Library construction x

Using Lib to build a specialized library x
Removing unreferenced modules x
Guidelines for choosing files for a specialized

library x

Debugging xx I?i

About MacsBug x

Installing MacsBug x
Theory of operation (a technical aside) x
Using MacsBug x

The MacsBug command language x
Numbers x

Chapter 9

Strings x

Symbols x

Expressions x

Commands x
General commands x

Memory commands x

Break commands x

A-Trap commands x
Heap Zone commands x
Disassembler commands x

Summary x

Command Reference æ 20¢

Command prototype x
AddMenu — Add menu item x
Adjust — Adjust lines x
Alert — Display alert box x

Alias —- Define and write command aliases x

Align — Align text to left margin x
Asm — 68xxx Macro Assembler x
Beep — Generate tones x
Begin...End — Group commands x
Break — Break from For or Loop x
C — C Compiler x
Canon — Canonical spelling tool x
Catenate — Concatenate files x
Clear — Clear the selection x
Close — Close a window x
Compare — Compare text files x

Confirm — Display confirmation dialog x

Continue — Continue with next iteration of For or Loop x

Copy — Copy selection to Clipboard x
Count — Count lines and characters x

Cut — Copy selection to Clipboard and delete it x

CvtObj — Convert Lisa object files to MPW object files x

Date — Write the date and time x
Delete — Delete files and directories x

DeleteMenu — Delete user-defined menus and items x

DeRez —- Resource Decompiler x

Directory — Set and write the default directory x

DumpCode — Write formatted code resources x

DumpObj — Write formatted object file x

Duplicate — Duplicate files and directories x

Echo — Echo parameters x

Eject — Eject volumes x

f

Entab — Convert runs of spaces to tabs x
Equal — Compare files and directories x

_ Erase — Initialize volumes x

Evaluate — Evaluate an expression x

Execute — Execute a command file in the current scope x
Exit -~ Exit from command file x
Export ~- Make variables available to programs x
FileDiv — Divide a file into several smaller files x
Files — List files and directories x
Find — Find and select a text patern x
Font — Set font characteristics x
For... — Repeat commands once per parameter x
Help — Display summary information x
If... — Conditional command execution x
Lib — Combine object files into a library file x
Link — Link an application, tool, or resource x
Loop...End — Repeat command list until Break x
Make — Build up-to-date version of a program x
MDSCvt — Convert MDS Assembler source x
Mount — Mount volumes x
Move — Move filės and directories x
New — Open a new window x
NewFolder — Create a directory x
Open — Open a window x
Parameters — Write parameters x
Pascal — Pascal Compiler x
PasMat — Pascal program formatter (“pretty-printer”) x
PasRef — Pascal cross-referencer x
Paste — Replace selection with contents of the Clipboard x
Print — Print text files x
Rename — Rename files and directories x
Replace — Replace the selection x
Request —- Request text from a dialog x
Rez — Resource Compiler x ;
RezDet — The resource detective x-
Save — Save windows x
Search —~ Search files for a pattern x
Set — Define and write Shell variables x
SetFile — Set file attributes x

Shift — Renumber command file positional parameters x
Tab — Set a window’s tab value x
Target — Make a window the target window x

TLACvt — Convert Lisa TLA Assembler source x
Unalias — Remove aliases x

Unmount — Unmount volumes x

xi

Appendix A

Appendix B

Appendix C

Appendix D .

Appendix E

‘Appendix F

Unset — Remove Shell variables x

Volumes — List mounted volumes x

Windows — List windows x

Macintosh Workshop Files Jut 395

Distribution files (annotated) x

HD-20 configuration x

800K disk configuration x

summary of Selections and Regular Expressions x Yo 2-

Selections x
Regular expressions x
Option key characters x

MPW Characters xæ 406

Resource Description Syntax x 4/0

File Types, Creators, and Sutfixes xx 4/4

Writing an MPW Tool we #2 l

Shell facilities x
Parameters x

Shell variables x

Standard I/O channels x

Status results x

Signals. x
Exit processing x

Restrictions x

Initialization x
Memory management x

Heap x

Stack x

Windows, graphics, and events x

Style x
User interface x

A

Appendix G Writing a Desk Accessory or Other Driver Resource xe 433

Appendix H Object File Format ææ 439

Appendix! in Case of Emergency x 4449

Glossary

Index

xiii

xiv

Chapter 1

Chapter 2

Chapter 3

Chapter 4

eee e a r e a a

Figures and tables

System Overview xx

Figure 1 Steps in program development xx

Figure 2 Setup of MPW folders and files xx

Getting Started xx

Figure 1-1 Worksheet windows xx
Figure 1-2 Press enter to execute selected text xx

Figure 1-3 Help summaries xx

Figure 1-4 Hierarchical directory structure xx

Figure 1-5 Setting the default directory xx

Figure 1-6 Executing Make output for samples xx
Table 1-1 Basic file handling commands xx

Basic Editing xx

Figure 2-1 Text selected with Find command xx

Figure 2-2 Text highlighted in the active window and target

window xx

Using the Command Language xx

Figure 3-1 Trafficking in variables xx

Figure 3-2 Standard input and output xx

Figure 3-3 Redirecting diagnostic output xx

Table 3-1 Command terminators xx

Table 3-2 Variables defined by the Shell xx

Table 3-3 Variables defined in the Startup file xx

Table 3-4 Parameters to command files xx

Table 3-5 Special characters and words xx

Table 3-6 Quotes xx
Table 3-7 Structured commands xx

Table 3-8 Expression operators xx

Table 3-9 Filename generation operators xx

Table 3-10 I/O redirection xx

Table 3-11 Pseudo-filenames xx

Advanced Editing xx

Figure 4-1 A selection specification xx

Figure 4-2 Selections in two windows xx

Table 4-1 Editing commands xx
Table 4-2 Selection commands xx
Table. 4-3 Regular expression operators xx

Chapter5 Editing Resources With ResEdit xx

Figure 5-1 A disk volume window xx
Figure 5-2 A file window xx
Figure 5-3 A resource type window xx
Figure 5-4 Editing 'CURS' resources xx
Figure 5-5 Font editor window xx
Figure 5-6 ICN#* window xx
Figure 5-7 Window template data xx

Chapter 6 Resource Compiler and Decompiler xx

Figure 6-1 Rez and DeRez xx
Figure 6-2 Creating a resource file xx
Figure 6-3 Padding of literals xx
Figure 6-4 Internal representation of a Pascal string xx
Table 6-1 Resource description file expansion operators xx
Table 6-2 Resource Compiler escape sequences xx

Chepter7 Putting Together an Application, MPW Tool, or Desk Accessory
Figure 7-1 Building a program xx
Figure 7-2 Linking xx :
Figure 7-3 Building a desk accessory with DRVRRuntime xx
Table 7-1 Files to link with xx
Table 7-2 File types and creators xx
Table 7-3 Makefile summary xx

Appendix B Summary of Selections and Regular Expressions xx

Table B-1 Selections xx

Table B-2 Regular expressions xx

Appendix C MPW Characters xx

Table C-1 MPW operators xx

Appendix E File types, Creators, and Suffixes xx

Table E-1 File types and creators xx

XV

Appendix F Writing an MPW Tool xx

Figure F-1 Parameters in C and Pascal xx

Figure F-2 VO buffering xx
Figure F-3 Memory map xx

xvi

Preface

Power Tools for Macintosh
Programmers

The Macintosh™ Programmer’s Workshop provides professional software development tools for the Apple® Macintosh computer. Briefly, the Macintosh Workshop consists of the following parts:
m MPW Shell (the programming environment)
m 68xxx Assembler

a Linker

@ Resource Editor

E Resource Compiler and Decompiler

w Debugger

The system also includes many other tools for creating and
manipulating text and resource files. The following Macintosh
Workshop products are separately available:
® Macintosh Programmer’s Workshop Pascal provides the

additional tools, interfaces, and libraries you need to develop
applications, tools, and desk accessories in Pascal.

a Macintosh Programmer’s Workshop C provides the Green
Hills Software C Compiler, along with the interfaces and libraries
needed to develop applications, tools, and desk accessories
in C. i

Power Tools for Macintosh Programmers xvii

xviii Preface

a MacApp is an expandable “generic application.” MacApp

provides of a set of object-oriented libraries that automatically

implement the: standard Macintosh user interface, thus
simplifying and speeding up the process of software

development.

The entire MPW system is outlined in detail in the “System

Overview” section that follows.

The Macintosh Programmers Workshop provides numerous

advantages over previous development systems. Among these
advantages are f

m Integration—the various components of the MPW system all run
within the MPW Sheil environment The integrated environment
enables you, for example, to automate build procedures for

_ programs.

E Command scripting--in addition to menu commands MPW
provides a full command language. You can combine any series
of commands into a command file (or “script”) for fast,
accurate, automatic results.

R Regular expression processing—the editor component of the
Shell provides powerful search and replace capabilities with
regular expressions, which form a language for describing

complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command

a Extensibility--you can create your own integrated tools to run
within the Shell environment. You can also add your own menu

commands to the Shell; these commands can be command files,
integrated tools, or stand-alone applications.

Taken together, these features add up to a level of integration,

power, and ease of‘use not found in any previous microcomputer-
based development system.

What you’ll need

This section describes the hardware and documentation needed to

develop software with the Macintosh Programmer's Workshop.

i>

ge `N

Hardware requirements

The Macintosh Workshop runs on the Macintosh Plus, the
Macintosh 512K and 512K Enhanced, and the Macintosh XL. The
system runs on both the original 64K ROMs and the newer 128K
ROMs. Apple’s Macintosh peripherals, including the
LaserWriter™, are supported.

The Workshop requires a minimum disk storage of 1.6 Mbytes (two
800K disks). Use of a hard disk is recommended but not
fequired—with the minimum disk configuration, you can use only
one language at a time, without swapping disks. A Macintosh Plus
with an Apple Hard Disk 20™ is the recommended configuration.

Both 400K (nonhierarchical) and 800K (hierarchical file system)
disks are supported. The software is shipped on 400K disks, Hard
disks may be either hierarchical (HFS) or non-HFS volumes, but
using non-HFS volumes is more awkward.

System Folder requirements

The System Folder provided with MPW includes version 3.2 of the
System file and version 5.3 of the Finder. System file 3.2 is required
for MPW. In addition, the following versions of the printer drivers
are required:

m Laser Prep 3.1

a ImageWriter 2.3

m AppleTalk® ImageWriter™ 2.3

These files are available on version 1.1 or later of the System Tools
disk, and on version 1.0 or later of the Printer Installation disk.

¢ HD-20 Startup Disk Users: If you are using a 512K Macintosh
with the 64K ROM and an HD-20 (HFS) startup disk, you must
use version 1.1 or a later version of the HD-20 Startup disk.

Pascal and C requirements

MPW Pascal requires most of the available memory in 512K
systems.

MPW C requires a Macintosh Plus or a 1-Mbyte Macintosh XL.

What You'll Need xİx

xX Preface

Documentation

All programmers will need Volumes I-III of Inside Macintosh

(published by Addison-Wesley, 1985), the definitive guide to the

Macintosh operating system and user-interface toolbox. In order to

program for the Macintosh Plus, you'll also need Volume IV of

Inside Macintosh. If you need to understand and control the

numeric environment, you'll need the Apple Numerics Manual, a

guide to the Standard Apple Numeric Environment (SANE). Lastly,

you'll need the appropriate documentation for the programming

language you'll be using:

u Assembly Language: Macintosh Programmer's Workshop
Assembler Reference. This manual is included in your Macintosh
Programmer’s Workshop package. You'll also need the

appropriate microprocessor documentation from Motorola.

u Pascal: Macintosh Programmer's Workshop Pascal Reference.

This manual is available as part of a separate MPW product.

u C: Macintosh Programmer’s Workshop C Reference. This

manual is available as part of a separate MPW product. For a

guide to the C language itself, you'll need The C Programming

Language by B. Kernighan & D. Ritchie, or a similar C manual.

About this manual

This book describes the MPW development system, including the

Shell and tools. This manual is written for programmers who are

already familiar with the Macintosh. It outlines the process of

building’a program, but does not deal with the particulars of writing

it. Language-specific information is covered in the manuals listed

above.

Syntax notation

The following syntax notation is used to describe Macintosh

Workshop commands:

terminal Plain text indicates a word that must appear in

the command exactly as shown. Special

symbols (-, §, & and so on) must also be

entered exactly as shown.

FN

nonterminai

[optional]

repeated...

alb

(grouping)

Items in italics can be replaced by anything
that matches their definition.

Square brackets mean that the enclosed
elements are optional.

Ellipses (...) indicate that the preceding item
can be repeated one or more times.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with
the | and ... notation).

This notation is also used in the MPW.Help file. (See “The Help
Command” in Chapter 1.)

Filenames and command names are not Sensitive to case. By
convention, they are shown with initial Capital letters.
Terms printed in boldface appear in the glossary.

About this Manual xxi

System Overview

A road map xx

The MPW Sheil xx

File handling commands x

Editing commands x

Structured commands x

Other built-in commands x

MPW tools xx

Assembler x

Applications xx

ResEdit x

Debugger xx

Special command files xx

Sample program files xx

System Folder xx

Overview of MPW files and flrectories xx

System Overview

This section outlines the program development process and contains a general

description of the various parts of the Macintosh Programmer's Workshop.

A Road Map

Figure 1 illustrates the typical stages of program development. Examples in Chapter 1

recapitulate these steps, using the /nside Macintosh sample program as an example.

System Overview

~

Ny

Libraries

(OBJ ‘)

CODE

Edit program

(Sheil editor)

Application,

Tool, or Driver file

{executable code

resources}

Other Resources

Create resources

(ResEdit or Rez)

A Road Map

Figure |
Steps in program development

The rest of this section describes the various parts of the Macintosh Workshop, and
how they relate to the development process. (See Chapter 1, “Getting Started,” for
information about entering MPW commands.)

The MPW Shell
The MPW Shell is an application that provides an integrated, window-based
environment for program editing, file manipulation, compiling, linking, and
program execution. The other parts of the Macintosh Workshop—the Assembler,
Compilers, and other tools described below—all operate within the Shell
environment. These tools can perform input and output to files and to Shell
windows. l

The Shell combines a command language and a text editor. You can enter

commands in any window, or execute them by using menus and dialogs. The

command language provides text editing and program execution functions,
including parameters to programs, command file (scripting) capabilities,
input/output redirection, and structured commands.

The MPW Sheil integrates the following functional components:

a An editor for creating and modifying text files. The editor implements normal

Macintosh-style editing together with scriptable editing commands so that you

can program the Shell to perform editing functions. (See Chapters 2 and 4.)

a A command interpreter that interprets and executes commands that you enter
in a window or read from a file. Gee Chapters 3 and 9.)

= Built-in commands—besides editing commands, these include commands for
handling files without returning to the Finder, processing variables, program

control flow, and more. (See Chapter 3.)

File handling commands

The MPW Shell provides the following built-in commands for manipulating files and
directories without having to exit to the Finder:

4 System Overview

S

ATEA

Catenate

Close

Delete

Directory

Duplicate

Eject

Equal

Erase

Files

Mount

Move

NewFolder

Open

Rename

Save

SetFile

Target

Unmeount

Volumes

Windows

concatenate files

close a window

delete files and directories

set the default directory

duplicate files and directories’
eject volumes

compare files and directories
initialize volumes

list files and directories

mount volumes

move files and directories

Open a new window

create a directory

open a window
tename files and directories
save windows

. set file attributes

make a window the target window
unmount volumes

list mounted volumes

list windows

Editing commands

Besides the Macintosh’s usual mice-and-menus editing capabilities, a number of
built-in editing commarids are provided. You can use these commands both
interactively and in command files. Editing commands feature the use of regular
expressions, a set of special operators that forms a powerful language for defining
text patterns.

Adjust

Align

Clear

Copy
Cut

Find

Font

Paste

Replace
Tab

adjust lines

align text to left margin

delete the selection
copy selection to the Clipboard
copy selection to the Clipboard and delete the selection
find and select a text pattern
set a window’s font characteristics
replace selection with contents of the Clipboard
replace the selection
set a window’s tab value

The MPW Shell

Structured commands

The Shell aiso provides a number of built-in structured commands. Used mainly in

command files, these commands provide conditional execution and looping

capabilities.

ipa conditional command execution
For... repeat commands once per parameter
Loop...End repeat commands until Break
Begin. ..End group commands
Break break from For or Loop
Continue continue with next iteration of For or Loop
Exit exit from command file

Other built-in commands

The MPW Shell also provides a number of other predefined commands.

AddMenu add menu item

Alert display alert box
Alias define alternate command names
Beep generate tones

Confirm display confirmation dialog
Date write the date and time
DeleteMenu delete user-defined menus and items
Echo echo parameters
Evaluate evaluate an expression

Execute execute a command file without affecting variable scope

Export make variables available to programs
Help. display summary information

Parameters write parameters
Request request text from a dialog
Set define and write Shell variables
Shift renumber command-file positional parameters

Unalias remove aliases
Unset remove Shell variables

MPW tools
MPW tools are programs that run within the Shell environment. The following tools
are provided with the Macintosh Workshop, several are described in more detail in

the following sections.

6 System Overview

Asm 68xxx Macro Assembler
C C Compiler (available as a separate product)
Canon canonical spelling tool
Compare compare text files
Count count lines and characters
CvtObj convert Lisa® object files to MPW object files
DeRez Resource Decompiler
DumpCode dump code resources
DumpObj dump object files
FileDiv divide a file into several smaller files
Lib combine object files into a library file
Link link an application, tool, or resource
Make program maintenance tool
MDSCvt convert MDS Assembler source
Pascal Pascal Compiler (available as a separate product)
PasMat Pascal program formatter (part of the MPW Pasca! product) PasRef Pascal cross-referencer (part of the MPW Pascal product) Print print text files
Rez Resource Compiler
RezDet the resource detective
Search search files for a pattern
TLACvt convert Lisa TLA Assembler source

sasas a
Assembler

‘The Assembler translates 68000, 68010, and 68020 assembly-language programs into object code. 68881 floating-point instructions and 68851 memory-management instructions are also supported. The Assembler provides powerful macro facilities, code and data modules and entry points, local labels, and (optional) optimized instruction selection. Assembly-language interfaces are provided to the “Inside Macintosh” libraries (including the 128K ROM). Other libraries and example files are also provided. i

me a
p ascal tools

The Pascal system is provided as a separate product, MPW Pascal, which includes the following:

u Pascal Compiler

@ Pascal cross-referencer (PasRef)
a Pascal program formatter (PasMat)
z Pascal runtime library

MPW tools

a Pascal interfaces to the “Inside Macintosh” routines (including the 128K ROM

routines)

m sample programs

Macintosh Workshop Pascal is an improved version of Lisa Pascal. The
improvements include SANE numerics, access to C functions and global data,
arbitrary-length identifiers, and Object Pascal extensions.

C Compiler

The C Compiler is also provided as part of a separate product, MPW C, which

includes the following:

e C Compiler

s Standard C Library

a C interfaces to the “Inside Macintosh” libraries (including the 128K ROM

routines)

a sample programs

The C Compiler implements the full C language as defined in The C Programming
Language, by. Brian Kernighan and Dennis Ritchie. The usual extensions to this
definition provide enumerated types and structure assignment, parameters, and

function results. In addition, Apple extensions provide SANE numerics and
interfaces to Pascal functions and Macintosh traps. Most Standard C Library
functions, including character and string processing, memory allocation, and
formatted input/output are also provided.

Linker

The Linker combines object code files and resources into executable programs,
including only the code and data modules that are referenced. The Linker replaces

the code segments in an existing resource file, without disturbing other resources in
the file. An option directs the Linker to produce a link map as a text file. A separate
tool, Lib, provides library manipulation.

Make

The Make tool simplifies software contruction and maintenance. Its input is a list of
dependencies between files, and instructions for building each of the files. Make
génerates commands to build specified target files, rebuilding only those
components that ‘are out-of-date with respect to their dependencies.

8 System Overview

TEN

Resource Compiler and Decompiler

The Resource Compiler (Rez) reads a textual description of a resource and converts it
into a resource file. The Resource Decompiler (DeRez) converts ‘resources into a
textual representation that can be edited in the Shell, and recompiled with
Rez—DeRez can be used to create Resource Compiler input from any existing
resource files. Rez and DeRez use templates (type declarations) to define resource
types. Definitions of the standard Macintosh resource types (MENU, 'STR#!, ICON",
and so on) are provided in two commented text files, Types.r, and SysTypes:r.
Another tool, RezDet, checks resource files for consistency.

Conversion tools

TLACvt converts Lisa Workshop Assembler (TLA) source files to MPW Assembler
source files. CvtObj converts Lisa Workshop object files to the MPW object file
format.

MDSCvt converts Macintosh 68000 Development System (MDS) Assembler source
files to MPW Assembler source files.

Canon is a tool for regularizing the spelling and capitalization of identifiers in source
files moved from other systems. (In the Macintosh Workshop languages, ali
characters are significant rather than just the first eight as in the Lisa Workshop. In C,
case also matters.)

=

Applications
Applications are stand-alone programs that can be launched from the Shell, but that
execute outside the Shell environment. A single application, ResEdit, is provided
with MPW. It is assumed that you already have the Font/DA Mover, which is
distributed on the System Tools and System Installation disks, Any application,
such as MacPaint or MacWrite, can be executed from the MPW Shell.

it
ResEdit

ResEdit is an interactive, graphically based resource editor for creating, editing,
copying, and pasting resources. MPW Pascal includes a set of extended Resource
Manager routines that make it possible to write your own add-on resource editors for
ResEdit. .

=

Applications

Debugger
The MacsBug 68000 debugger is provided with the Macintosh Workshop. MacsBug

resides in RAM together with your program. MacsBug allows you to examine

memory, trace through a program, or set up break conditions and execute a program
until they occur. Another version of MacsBug, in the file MacsBug.XL, is provided

for use on the Macintosh XL.

Special command files

Several special command files are provided. These text files contain commands that
are read by the MPW Shell at startup and shutdown.

The Startup file is a command file containing a startup script that is run each time
you start the MPW Shell. It, in turn, executes a file called UserStartup, which you
can use to customize the. Workshop. The Startup file is discussed in detail in
Chapter 3.

The Suspend and Resume files are command files that preserve the state of the
Shell environment while a stand-alone application is executing. The Quit file
allows you to save the state of the Shell environment when you exit to the Finder.

Sample program files
Source files are provided for the sample application from Jnside Macintosh, as well
as for a sample MPW tool and a sample desk accessory. Assembiy-language versions
of these programs are contained in the folder AExamples. MPW Pascal and MPW C
also include Pascal and C versions of the sample files, in the folders PExamples and
CExamples. The Examples folders also contain instruction files and makefiles for
building the sample programs, these are discussed in the next chapter.

System Folder

The latest versions of the System file and Finder have been provided for use with
MPW and on your application disks. Several fonts have been removed from the
System file, to reduce its size for use with systems without a hard disk.

0 System Overview

% Note: System file version 3.2 is required for use of MPW. MPW also requires the
printer drivers provided on the System Tools 1.1 or Printer Installation 1.1 disk.

a;

Overview of MPW files and directories

Appendix A contains a complete, annotated list of all of the Macintosh Workshop
files. It also describes the recommended setup of files on an HD-20 or set of 800K
disks. Figure 2 shows the initial setup of your MPW folders and files on an HD-20.
(The Pascal and C systems are included.)

é File Edit View Special

MPY Shell B 2. 2l z

nerau
MPW.Help SysErrsfrr Tools Applications Debuggers

Pa
AExamples Alncludes Libraries Rincludes

Overview of MPW files and directories

aae
CExamples Cincludes CLibraries

PExamples PLibraries Pinterfaces

Figure 2
Setup of MPW folders and files

For important information about setting up your MPW system, see “Installing the

System” in Chapter 1.

12 System Overview

fi ™

a

p>

A

Chapter 1

Getting Started

Installing the system xx

-20 installation x

Macintosh XL installation x
Installing the system on 800K disks x

Starting up xx

5

Editing xx

Giving commands xx

The Enter key x
Executing several commands at once x
Terminating a command x
The Help command x

File handling commands xx

An aside: The alias command x

Pathname variables x

Wildcards (filename generation) x

Building a program xx

Assembling and compiling x
Compiling Resources x

Linking x

Automating the build process with make x

Running an application xx

14 Chapter 1: Getting Started

fo

This chapter introduces the use of the Macintosh Programmer’s Workshop, and
briefly describes the steps in developing a Macintosh application. It shows you how
to assemble, link, and run a simple application by using examples contained in the
“Examples” folders. Example files included for assembly language, Pascal, and C.

installing the system

The Macintosh Programmer’s Workshop is shipped on five 400K disks; the Pascal
and C systems occupy. another two disks each. This section describes how to install
the Macintosh Workshop files onto the following disks:

æ the Apple HD-20, which uses the hierarchical file system (HFS)

@ a Macintosh XL hard disk, which uses the “flat” (nonhierarchical) file system

a a set of 800K floppy disks

Appendix A, “Macintosh Workshop Files,” shows the recommended layout of files
on an HD-20 or 800K disk system. HFS pathname rules are explained in this chapter.

% Note: A command file named Startup is executed by the MPW Shell during
initialization. This file defines several Shell variables, including the variables
that indicate. the location of MPW tools, applications, include files, and
libraries. The file originally named “Startup” works with the standard
configuration (HD-20, hierarchical file system). Special Startup files have been
provided for use with nonhierarchical file systems and 800K-only systems—see
the instructions that follow.

Note also that System file version 3.2 is required for using MPW. (A version of this
file, with several fonts removed, is shipped with the system.)

HD-20 installation

Use the Finder to do the following:

1. Create a folder named MPW on the hard disk.

2. Copy the contents of all five disks (except the System Folder on the MPW1 disk) to
folder MPW. If you have Pascal or C, also copy those disks into the MPW folder.

3 Move the entire contents of the folder More Tools to the Tools folder; throw away

More Tools. i

installing the system

4. Move the file Asm to the Tools folder. If you have Pascal or C, move the Pascal

and C Compilers (named Pascal and C) into the Tools folder. MPW Pascal
includes some additional Pascal tools, PasMat and PasRef, which should also be

moved into the Tools folder.

*% Note: The files Startup, UserStartup, Suspend, Resume, Quit, MPW.Help, and

SysErrs.Err need to be in the same folder as the MPW Shell application, or in the

System Folder.

By default, the Macintosh Workshop assumes installation in the MPW folder as

described above. Other configurations are possible—but you'll need to make some

simple changes to the pathnames defined in the Startup file so that the Shell and tools
can find various files. (

Macintosh XL installation

A separate Startup file, Startup.XL, has been provided for use with nonhierarchical
file systems. To install MPW onto a Macintosh XL, use the Finder to do the following:

1. Rename the file Startup (for example, to Startup.HD20), and rename the file

Startup.XL to Startup.

2. Simply copy all of your Macintosh Workshop files onto the hard disk—the
distribution files have unique names, so you needn’t worry about any name

conflicts.

“ Note: The file Sample.r appears with the assembly-language, Pascal, and C

examples. All three Sample.r files are identical, so the name conflict can be
safely ignored. The file Memory.r also appears with both the Pascal and C
examples.

Folders aren’t recognized by the nonhierarchical file system, so the arrangement of

files in folders is irrelevant to the functioning of the system. (

% Note: The examples in this manual assume a hard disk running HFS. They'll
work properly on a Macintosh XL if you leave off any pathname prefixes.

Installing the system on 800K disks

Another Startup file, Startup.800K, has been provided for your use if you are running
MPW from 800K disks. To install the system onto a set of 800K disks, use the Finder to

do the following:

1. Rename Startup (for example, to Startup.HD20), and rename the file

Startup.800K to Startup.

2. Copy the distribution files and folders onto your 800K disks to create the
arrangement given in Appendix A under “800K Disk Configuration.”

16 Chapter 1: Getting Started

ro

fo

` Several configurations of files are possible. We recommend creating an MPW boot

disk and a separate disk for each language system you use. The startup disk should

contain the System Folder, MPW Shell, Rincludes and Libraries folders, and a Tools

folder containing a number of the most useful tools. This disk should remain in the

drive while you run MPW. Each of the language systems will also fit onto a single disk

(which means that you. can use only. one language at a time).

With this arrangement, the MPW disk has about 100K bytes free, allowing you to add

printer drivers, fonts, or frequently used tools. The language disks each have

300-400K of free space for your source, object, and application files. (You can also `

move the Examples folders to free up additional disk space.)

% Note: The examples in this manual assume you are running MPW from an

HD-20. To make the examples work on an 800K-only system, you'll have to

change some of the pathnames used in the examples, and make sure the correct

disks are. on-line. (See. Appendix A.)

Starting up

% Note: A small RAM cache (perhaps 32K) is useful when running MPW. Larger

caches may be used on the Macintosh Plus with the Assembler and Pascal, but

are not recommended when using MPW C. Use of MPW with the Switcher is not

recommended. i

From the Finder, select and open the MPW Shell icon. The Worksheet window

(shown in Figure 1-1) will appear. with its full pathname in the title bar (for example, .

. “EED-MPW: Worksheet”). This window has no close box, and is always present on the

screen, otherwise it’s just like any other window.

You can also start the Workshop by double-clicking on any Macintosh Workshop text

document or tool. i

Starting up 17

é File Edit Find Format Windows

Figure 1-1
Worksheet window

A status panel at the window's lower-left comer shows the name of the command
that’s currently executing. When you first start the Macintosh Workshop, it begins by

executing a command file called Startup. The Startup file defines several variables
and command aliases (alternate command names); this file is further described in
Chapter 3.

Important

The Startup file must be in the same directory as the MPW Shell, or in the System
Foider.

18 Chapter }: Getting Started

as

Editing

Basic editing functions are available as menu commands. You can open a file with

the open command. or by selectiong it’s name on the screen and choosing the open

selection command (command-W) from the File menu.You can select and edit text

with the usual Macintosh editing techniques, using menu commands to aut, copy,
and paste selected text. The menu commands are fully described in Chapter 2,

“Basic Editing.”

Editing with MPW is unique in that most menu functions are duplicated in the Shell

command language. Editing and other command-language functions are fully

integrated—you enter and execute editing commands just like any other commands.

Editing commands are entered in the active window (the topmost window), but they

act on text in the target window (the second window from the top), or another window
that you explicitly name. The command language lets you produce command files of
editing commands: You can save any series of commands as a normal text file, and
execute the file by simply entering the filename. Command-language editing is
discussed further in “Editing With the Command Language” in Chapter. 2.

Giving commands

In MPW, commands may be either built-in commands, tools, applications, or
command files, as explained in the “System Overview” section. Commands are
written as a series of words separated by spaces or tabs. By default, command output `
and any error messages appear immediately after the command. Commands are not

case sensitive. You can have multiple open files, and you can enter commands in

any window.

The simplest commands consist of the command name only. For example, type the

command

Date

and press the Enter key (without pressing Return first—that is, the insertion point

must be on the same line as the command when you press Enter). This command

lists the date and time:

Tuesday, February 14, 1987 7:12:00 AM

Commands can have parameters. For example:

Date -d

The -d option tells the Date command to list the date only:

Tuesday, February 14, 1987

Giving commands 19

The Enter key

The Enter key serves as a “do it” button, causing commands to be executed. You can

type commands from the keyboard and hit Enter to execute the command line.
(When no text is selected, the entire line is executed, regardless of where the

insertion point is on the line.) You can also select command text that is already on
the. screen and press the Enter key to execute the selected text.

The Enter command on the Edit menu has the same effect as pressing the Enter key.
Command-Return is also equivalent to Enter.

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute
any number of commands with one stroke. An example is shown in Figure 1-2.

é file Edit Find Format Windows

= DMP: Worksheet =

date -d
Tuesday, February 14, 1987

ree fee f a Baku ;

dup ic artup Userttar tup Backup
Ti bes “Bae ba oa

Figure 1-2
Press Enter to execute selected text

In Figure 1-2, executing the selected text would first make a new folder (directory)
named Backup, then copy the files Startup into Backup, wiatanpeitstensneanne
Smpn, and then list all of the files in Backup. (Each of these commands, and
the pathname syntax, is described in the following sections.)

20 Chapter 1: Getting Started

a

You can also directly execute text files that contain other commands, simply by

entering the filename of the command file. Executing a command file has the same
effect as selecting the commands in an open window and pressing Enter—the only
difference is the scope of variable and alias definitions (discussed in Chapter 3).

Important

Commands that don't produce any output run sientty; this facilitates their use in
command files.

Terminating a command

To terminate a command while it's executing, press Command-period, the standard
Macintosh command for this purpose.

Important

Many commands (including Asm. C, and Pascal) normally take thelr input from a file:
however, If no file is specified, they will begin reading from the console (standard
input”). If the Shell appears not to be listening to the commands you are entering, it
probably isn't: The currently executing command (shown in the active window's
status panel) may be reading the text that you enter. If a program is reading from
standard input, you can press Command-Enter (or Command-Shift-Retum) to
indicate end-of-file and terminate Input. (See “Terminating Input With Command-
Enter” in Chapter 3.)

The Help command

The Help command displays summary information for commands. For example, to
display a description of the Files (list files) command and its options, type the
command

Help Files

and press the Enter key. You'll see the following syntax description:

Files f{option..] (name..] > fileList

-c creator

-1

list only files with this creator

-q # don't. quote filenames with special characters

+

long format (type, creator, size, dates, etc.)

“E, recursively list subdirectories

list only files with this type

Giving commands 2}

% Note: The square brackets are a syntax element indicating that a parameter is

optional. Ellipses (...) indicate that the preceding item may be repeated. Syntax

notation is described in the Preface to this manual. The number sign (#) is the

MPW comment character.

You can directly edit and execute the text on the screen. For example, you can edit

the above text as follows:

u use the mouse to select [option...].and {name...]; replace them with the

option -1 and the directory name AExamples

a remove the output specification > fileList

The result is a command that will list the files in directory AExamples, in long

format:

Files -l1 AExamples

(AExamples is the directory containing sample assembly-language programs; -l is an

option that generates “long” output.) Press Enter to execute the command—

directory information will appear immediately following the command.

You can also use the Help command to display additional summary information,

including

@ an annotated list. of all MPW commands

a an annotated list of the characters that have special meanings to the MPW Shell

a descriptions of the syntax of expressions, selections, and text patterns

For general information about Help, execute the Help command with no

parameters:

Help

This command displays the information shown in Figure 1-3

Figure 1-3
Heip summaries

22 Chapter 1: Getting Started

oo

help
MPH 1.0 Help Summaries

Heip summaries are available for each of the MPH commands.
To see the list of commands enter “Help Commands”. Brief
descriptions of Expressions, Selections, Patterns and
the Characters that have special meaning to the MPH Sheil are
also included.

To see Help summaries, Enter a command such as

Help commandName
Help Commands
Help Expressions
Heip Patterns
Heip Selections
Hel pe Chara terz

ew sen OTT

+

*

s

*

+

information about commandName
a fist of commands
summary of expressions
summary of patterns (regular expressions)
summary of selections
zamtar at HEH Shell Pe ieeh. char as ters

You can directly execute the Help commands given in the “Help Summaries” list

File handling commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 1-1
introduces the most commonly used file handling commands.

*% Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Chapter 9, “Command Reference.”

Table 1-1
Basic file handling commands

Catenate { file...]

Delete name...

Directory directory

Directory

Read the data fork of each file and write it to standard output. (By
default, standard output is to the active window, immediately after
the command.)

Delete file or directory name. If name is a directory, all of its

contents are deleted.

Set the default directory to directory.

Directory with no parameters writes the pathname of the current

directory.

File handling commands 23

Duplicate name... targetName Duplicate file or directory name to file or directory targetName.

Files { name...] List names of directories and files.

Move name... targetName Move file or directory name to targetName.

New [name] Open a new window. ;

NewFolder name... Create the new directory name.

Open name Open a window.

Rename namel name2 Rename namel to name2.

Save window Save a window.

Volumes [name...] List mounted volumes.

Windows . List open windows.

Sa

File and window names
% Note: All of the examples in this manual assume a hard disk named “HD:”,

using the hierarchical file system. If you are using a non-HFS system, all
pathname specifications should be omitted.

In the Macintosh Workshop, files and windows are specified in the same way. When a
name is passed as a parameter to a command, the system looks first for an open
window with that name; if no window is found, it looks for a file on the disk.

The following rules apply to naming:

@ Names are not case sensitive.

m A single component (file or directory name) of an HFS pathname is limited to 31
characters.

m Any character except a colon (:) may be used in a file or directory name. (Colons
separate elements in a pathname.)

It's wisest to avoid using spaces and special characters in filenames. When using
filenames that contain spaces, you’ll need to quote them so that they won't be
interpreted as individual words in the command language—for example, you would
need to specify the name “System Folder” as follows:

Files HD:"System Folder"

For the rules concerning quoting, see “Quoting Special Characters” in Chapter 3.

24 Chapter 1: Gefting Started

P ~

ETN

Selection specifications

Commands that take filenames for parameters can also act on the current selection in

a window. The current selection character, § (Option-6), represents the currently

selected text in a window. There are two possibilities:

$ Currently selected text in the target window. (The target window is

i the second window from the top, as explained in Chapter 2.)

name.$ Currently selected text in window name.

For example, the Count command counts lines and/or characters in a file. The

command

Count -1 Sample.a.§

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in “Editing With the Command

Language” in Chapter 2. :

% Note: The MPW Shell uses a number of special metacharacters (like §) from the
extended character set. These characters are fully listed in Appendix C.

Directories and pathnames
With the hierarchical file system (HFS), specifying a filename alone is often not

enough to identify a file—you frequently need to specify a pathname. A full

pathname is specified as follows:

volume-name :|directory-name: .../filename

A full pathname contains at least one colon (:), but cannot begin with a colon. An

example of a full pathname is

"HD :MPW:MPW Shell”

(The quotation marks are required because the filename “MPW Shell” contains a

space.)

A partial pathname is usually all you'll need to specify. When HFS encounters a

partial pathname, it begins the path at the current default directory. To maintain

compatibility with the nonhierarchical file system, the following definition is

applied: Any name that contains no colons or begins with a colon ts considered a

partial pathname.

For example, the name

:AExamples

is taken as a partial pathname. However, the name

File and window names 25

MPW:

is taken to be a full pathname (that is, a volume name only), rather than meaning the

directory HD:MPW. (When in doubt, you can always specify the full pathname for a

file or command.)

Double colons (:) in a pathname specify the current directory’s parent directory,
triple colons specify the “grandparent” directory (two levels up), and so on. See the
“File Manager” chapter in Volume IV of Inside Macintosh for more information on
HFS conventions.

“ Note: Notice that there’s no single “root” directory—each volume name (that

is, disk name) is a separate starting point for a directory. tree.

Figure 1-4 shows a directory “tree” describing your MPW files:

Figure 1-4
Hlerarchical directory structure

You can use the Files command to list the names of files and directories. For

example, the command

Files HD:MPW:

might display the following:

:AExamples:

:AIncludes:

:Applications:

:Debuggers:

:Libraries:

‘MPW Shell'

MPW.Help

Quit

Resume

:RIncludes:

Startup

Suspend

SysErrs,.Err

:Tools:

UserStartup

Worksheet

etc.

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames—in this case, “HD:MPW” forms the beginning of each pathname. Also

note that filenames containing special characters are quoted.

26 Chapter 1: Getting Started

i oN

om

Command search path

When you enter a command name (that is, a partial pathname), the Shell searches

for the command in the directories listed in the Shell variable {Commands}. This

search path is initially set to: (the current directory), MPW: Tools, and

MPW: Applications, as described in Chapter 3.

nt
A

Changing directories

You can change the default directory with the Directory command. Assuming you

have a hard disk named HD, you could change the default directory to the directory

AExamples in the MPW folder with the command

Directory HD:MPW:AExamples

Like most commands, Directory runs silently—it generates output only if an error

occurs. To verify that you have set the appropriate directory, enter the Directory

command with no parameters:

Directory

This command displays the default directory.

Remember that to specify a pathname containing spaces or other special characters,

you'll need to quote it by surrounding it with sigle or double quotes.

(See Chapter 3.)

An aside: the Alias command

For frequently used commands such as Directory, you may get tired of typing the

entire command name. You can easily define your own alternate names with the

Alias command. For example:

Alias CD Directory

After executing this command, you can execute the Directory command by entering

the new command name:

cD

To make an alias definition part of the Shell’s standard startup procedure, place the

definition in the file UserStartup.

File and window names 27

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Shell
variable (MPW), defined in the Startup file, expands to form the full pathname for.
the MPW folder, in this case “HD:MPW:”. Thus, the previous Directory command
could be entered as

Directory “{MPW}AExamples"

In this particular case, the quotes aren't necessary, but their use is recommended as a
general practice when variables are included in a pathname, because the pathname
could contain spaces-or other special characters.

You can use the Set command to define and redefine variables, as described in
Chapter 3. To see the values of all currently defined variables, enter the Set `
command with no parameters: |

Set”

Wildcards (filename generation)

You can specify a number of files at once by using the wildcard characters ? and = .
(Option-X), The ? character matches any single character (except a colon or-
Return), = matches any string of zero or more characters (other than colon or
Return). For example, the command ;

Files =.a

lists all filenames in the current directory that end with the suffix *.a”. (Several other _
wildcard characters can also be used to generate filenames—see “Filename
Generation” in Chapter 3.)

Building a program

This section introduces the MPW tools for assembling or compiling and linking a
program, using the Sample application provided with MPW. (This application is the
same as the Inside Macintosh sample application, and is available in Pascal, C, and
assembly language.) Instructions files are provided for each language. To see these
instructions for assembly language, open the file named Instructions.a in the
AExamples folder. You can select and enter commands directly from the
Instructions file, just as you can from any text file. ;

28 Chapter 1: Getting Started

% Note: The examples in this section refer to assembly language, but the process is

the same for C or Pascal:

Assembling and compiling

Before executing the example assemble or compile commands, you'll need to set the

appropriate default directory (AExamples, PExamples, or CExamples) by selecting
and entering the proper Directory command, as shown in Figure 1-5.

" é File Edit Find Format Windows
20S uo:mMPwW:AExamples:instructions.a S=

Instructions for Assembly Language Examples

The files used to create all of the following example programs ai
the folder “AExamples”. Depending on the configuration of your mi
you must select and execute one of the following commands to cha
directory to the correct folder.

Cirectery "CURL AE ame les" # for HORI conf pyra ti on

Directory ” {Boot}" # for Macintosh XL
Directory "Asm:AExamples" # for 800K disks

<To execute the command select it and press Enter. >

Drew sre OT]

Figure 1-5
Setting the default directory

v Note: The number sign (#) is the MPW comment character.

You can assemble or compile the Sample program with one of these commands:

Asm Sample.a

Pascal Sampie.p

C Sample.c

Buliding a program 29

Unless errors occur, the Assembler and Compilers run silently, like most MPW commands. The spinning “beachball” cursor indicates that the command is executing. (The name of the currently executing command is shown in the status panel at the active window’s lower-left corner.)
* Note: Asm, Pascal, and C are not built-in commands: they are separate files on the disk. If you've installed your MPW files as specified at the beginning of this chapter and set the appropriate default directory, you won't notice any difference. Otherwise, you may have to specify the command’s full pathname. (The Sheil expects to find Asm, Pascal, and C in the Tools folder; the appropriate pathname was defined in the Startup file.)

If the command returns with an error message indicating that it wasn’t found, check the installation instructions at the beginning of this chapter. Make sure that the Startup file is in the same folder as the Shell application, and that the other files and folders are set up as specified; then restart MPW,
The Asm command produces the object file Sample.a.o. To create an executable file, this file must be linked, and combined with the additional resources needed by the program.

Compiling resources i
In addition to code, the Sample application includes a number of other resources (a window, menus, and so on). A textual description of these resources is contained in the file Sample.r. You can use the Resource Compiler, Rez, to compile these resources as follows:

Rez Sample.r -o Sample

This command compiles the resources described in Sample.r, placing them in the resource fork of the file Sample. (-o is a Rez option for specifying the output file.)
Note that you can also use the interactive resource editor, ResEdit, to create or modify resource files. See Chapter 5 for information,

Linking

The Linker links object code and produces executable code resources; these resources are placed in the resource fork of the output (-o) file, without disturbing other resources in the file. To link the sample assembly-language program, enter the command f

Link Sample.a.o ~o Sample

30 Chapter 1: Getting Started

AN

This command produces the executable application Sample. For the Pascal or C programs, you'll also need to link your object code with a number of library files. A shortcut is described in the next section.

Automating the program build process with Make
When a program has more than a few modules, it becomes difficult to keep track of which other parts of a program need to be recompiled after you update a particular module. The Make command helps you keep track of these dependencies—it does this by referring to a text file called a makefile, which contains a set of dependency tules. A sample makefile has been provided in each of the Example folders.
To see how Make works with the assembly-language sample program, refer again to the Instructions file in the AExamples folder. To automatically generate the commands for building Sample.a, enter the command

Make -f MakeFile.a Sample

If the Sample program is up-to-date with respect to its component files (Sample.a and Sample.r), Make will generate no output. If Sample needs to be updated (or does not exist), Make will generate the set of commands required to rebuild it. This list of commands appears immediately after the Make command line. To build the file, just use the mouse to select these commands, as shown in Figure 1-6, and press the Enter key.

é File Edit Find Format. Windows

SSS M0MPU:Anemples:instructions.« EEEE]
examples. Execute the Make command below to see these commands, then execute the commands themselves.

Make -f MakeFile.a Sample

Fez Sampler ~a Sample
(Lea

Figure 1-6
Executing Make output for Sample

Buliding a program 31

% Note: The ð character that appears in the Link command is the Shell escape
character, and dReturn functions as a line continuation character—see “Quoting
Special Characters” in Chapter 3.

The result of these commands is an executable application, Sample.

Running an Application
You can run an application, like any other command, by selecting the application
name (in this case, Sample) and pressing the Enter key. (The Sample application
simply puts up a window and allows you to edit text in the window.)

You can also pass parameters to applications, as explained in Chapter 3. When you
quit from an application, you'll return to the MPW Shell. Two special command files
called Suspend and Resume save and restore Shell variables and other information
when you run an application and return to the Sheil.

32 Chapter 1: Getting Started

AEN

oy

Chapter 2

Basic Editing

Features xx

File format xx

Menu commands xx

Apple menu x
File menu x

Edit menu x

Find menu x
Selection expressions x

Selection by line numbers x
“Wildcard” operators x

Format menu x

Windows menu x
User-defined menus x

Editing with the command language

a

a

This chapter describes simple editing using menu commands. Advanced editing
capabilities are discussed in Chapter 4, “Advanced Editing.”

Features

The MPW Shell provides the following editing features:

= Both menu and command-language editing. The menu commands provide the
usual Macintosh interface,

® Selecting text by program syntax. You can double-click on any of the characters

{)} pH] { } y

to select everything between the character and its mate. (To select text between
quotes, click on the kft quote.)

m Complete integration of editing functions with the command interpreter. In the
MPW Shell, there is no separation of “command” and “editor” modes. To the
Shell, text is text—it is only when you uy to directly execute a string of text that the
Shell decides whether it is a legitimate command or not.

u Scriptable commands. Because editing commands are part of the command
language, you can use them with structured commands and variables to put
together command files that define new editing commands. (See Chapter 4.)

u Regular expressions for matching text patterns. These make possible powerful
search and replace functions that eliminate the need to make repetitive changes by
hand. (See Chapter 4.)

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return
characters, but no other formatting information. This format is compatible with
other applications that create text-only files—for example, the Shell can process
MacWrite files saved with the Text Only option. When you select the Open
command, the Shell displays all text-only files in its standard file dialog, regardless
of the file creator.

File format 33

% Note: From the Finder, you can open a text file created by another application

by selecting both the MPW Shell and the text file icons, and then choosing the

Open command.

You can display the invisible characters (spaces, tabs, returns) with the Show
Invisibles menu item.

A file's tab setting, font setting, selection, window settings, auto-indent state, and
invisibles state are saved with it, in the resource fork of the file.

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a

few differences and extensions, which are detailed in the following sections. (Irs
assumed that you are already familiar with standard Macintosh editing techniques.)

All menu commands act on the active (that is, the topmost) window.

% Note: Many menu items (including several items in the File menu and all user-
defined items) are disabled when running commands. This prevents you from
closing windows that the command may be reading, and from trying to run
another command at the same time.

é Menu

About the MPW Shell Displays version and copyright. information.

File Menu

New... Puts up a New dialog, shown below. The MPW New dialog
allows you to enter 2 name and select 2 directory location
for the document.

34 Chapter 2: Basic Editing

fos

pos

GORD

© AExamples

© Alnctudes

© Applications

O CExamples

0 Cinciludes

Open document

Open...

Open

Close

Save

Puts up an Open dialog that allows you to open any TEXT
file on the disk. When you open a file for the first time,
the selection point is at the top of the file. For subsequent
Opens, the file reappears in the same state in which it was
saved; that is, the previous selection or insertion point is
preserved unless the file has been modified outside the
editor.

Note: If you try to open a document that’s already open
in another window, that window will be brought to the
front.

Selection If you select a document name within a window, the Open
Selection command automatically displays the selected
name. This is a useful shortcut when you have already
displayed filenames on the screen, with the Files
command for example—you can then select a filename
and open a file directly, bypassing the usual Open
dialog. Variabie and command substitution do not occur
on the selection. l

Closes the active (topmost) window.

Saves the active window under its current name, without
closing it, This menu item is dimmed if the contents of
the window haven't been modified since it was last saved.

Menu commands 35

Save as... Puts up a Save As dialog, allowing you to change the name

and directory location of the active window. Saves the

current contents of the window as the “Save As” file, and

allows you to continue editing the new file. The old file is

closed without saving, under its original name.

Save a Copy... Saves the current state of the active window to a new file

on the disk. You can then continue editing the old file.

Revert to Saved Throws away any changes you have made since you last

saved the active window.

Page Setup... Puts up the standard Page Setup dialog.

Print Window/ Prints either the entire active window or the selection in

Print Selection the active window. If any text is selected in the active

window, that text is printed. If no text is selected, the
contents of the entire window are printed.

The Print menu item doesn’t put up the usual Print dialog.

Instead, you can specify printing parameters by setting

the Shell variable {PrintOptions}, described in

Chapter 3. Printing options include the number of copies

to print, which pages to print, print quality, font and font

size, headings and title, borders, and printing the pages

in reverse order (for use with the LaserWriter). See the

description of the Print command in Chapter 9 for a

complete specification of these options, or enter the

command Help Print to see a summary.

Technical Note: The Print Window menu item executes

the Shell command

Print {PrintOptions} "{Active}" ð

22 “"{Worksheet}"

Print Selection executes the same command, with .§
added after the name of the active window.

Important: For the Print command to work properly,

you must install the printer drivers available on version

1.0 or later of the Printer Installation disk. Use the

Chooser Desk Accessory from the Apple menu to specify

which printer to use. Use the Page Setup dialog to specify

paper size, orientation, and reductions or enlargements.

Quit Returns to the Finder, first allowing you to save the

current state of all open files.

36 Chapter 2: Basic Editing

roe S i 4

En e

Edit menu

Undo

Cut

Copy

Paste

Clear

Select All

Align

Shift Left, Shift Right

Enter

Find menu

Find...

Undoes the most recent changes to text in the active
window (but ot changes to resources such as the cursor
position or font and tab settings). You can select Undo
again to redo changes.

Copies the current selection in the active window to the
Clipboard, and then deletes it from its original jocation.

Copies the current selection in the active window to the
Clipboard.

Replaces the contents of the current selection in the
active window with the contents of the Clipboard.

Deletes the current selection in the active window.

Selects the entire contents of the active window.

Aligns the currently selected text with the top line of the
selection.

These commands move the selected text left or right by

one tab stop. You can thus move a block of text while
maintaining indentation. Shift Left adds a tab at the
beginning of each line. Shift Right removes a tab, or the
equivalent number of spaces, from the beginning of each
line. If you hold down the Shift key while using these
menu items, the selection will be shifted by one space,
rather than by. one tab.

Executes the currently selected text. This is exactly the
same as pressing the Enter key.

Puts up a Find dialog, and finds the string you specify.. By
default, the editor searches forward from the current

selection in the active window (and does not wrap
around).

Menu commands 37

Find what string?

a eee es
Cz

Find Same Repeats the last Find operation, on the active window.

Find selection Finds the next occurrence of the current selection in the
active window.

Display Selection Scrolls the current selection in the active window into
view,

Replace... Puts up a Find-and-Replace dialog:

Find what string?

ee ee a
Replace with what string?

T eee

Replace Same Repeats the last Replace operation.

% Note: For Find and Replace operations, a beep indicates that the selection was
not found.

Four switches govern the operation of the Find and Replace commands. (A check

mark indicates that an item is selected.)

38 Chapter 2: Basic Editing

fon

F aili"

Search Backward Search backward, from the current selection to the
beginning of the file. (Normally, searching is forward,
and stops at the end of the file.)

Entire Word Search for entire words only. To the editor, a word is
composed of the characters a-z, A-Z, 0-9, and the
underscore character (_). (These default values can be
changed by redefining the Shell variable {WordSet}—see
“Predefined Variables” in Chapter 3.)

Case Sensitive ` Searching is normally case insensitive; selecting this
menu item specifies case-sensitive searching. (it does
this by setting the Shell variable {CaseSensitive}—see
“Variables Defined in the Startup File* in Chapter 3.)

Selection Expression Enables the full selection and regular expression syntax,
as used with the command language and described in
Chapter 4. These expressions allow powerful selection
and pattern matching capabilities that use a special set of
metacharacters, introduced below.

Selection expressions

When the Find menu's “Selection Expression” switch is selected, you can use a
special set of expression operators to specify selections and text patterns. This
section introduces a commonly used subset of these selection operators. Many more
capabilities are available, and a full discussion is deferred to Chapter 4, “Advanced
Editing.”

Selection by line number. A number given by itself specifies a line number. For
example:

Find what selection expression?

This command selects line number 30 in the active window.

Menu commands 39

“Wildcard” Operators. The same wildcard operators used in filename generation
can also be used to specify text patterns for Find commands:

? Any single character (other than Return),

= Any string of 0 or more characters, not containing a
Return (to get the = character, press Option-X).

[characterLis#| Any character in the list.

Note: The brackets must be typed; they don’t indicate an
optional syntax element.

| mcharacterLis#i Any character not in the list (to get the — character, press
Option-L).

These pattern matching operators are part of a larger set called regular expression
operators. A regular expression consists of literal characters and/or regular
expression operators, and must be enclosed in slashes (/.../). For example:

Find what selection expression?

This command finds and selects any string that begins with “init”, and is followed by
any characters other than a return, as shown in Figure 2-1.

40 Chapter 2: Basic Editing

fo

EN

2

E mani

é File Edit Find Format Windows

HD: MPU: Examples. p: Semple. p E
{MenuSel ect)

END; {OF DoCommand)

BEGIN {main PROGRAM)
Mire taatication 3

Ini tGraf(@thePort)>; {initialize QuickDraw}

Ini tFonts; {initialize Font Manager)
FlushEvents(everyévent,0); - {call OS Event Mor to discard any pre

Ini thindows; iinis Window Manager)

J o MPwsn Gj E

Figure 2-1
Text selected with the find command

As mentioned, many additional Find and Replace capabilities are available—see

Chapter 4. In the command language, the Find menu functions are performed by the

Find and Replace commands. There’s also a tool named Search that can search

through a list of files for the occurrence of any text pattern.

Format menu

Tabs... Puts up a dialog that lets you set the number of spaces that
a tab character will signify for the active window. (The
default Tab setting is set by the Shell variable {Tab},

described in Chapter 3.)

Auto Indent Toggles Auto Indent on and off. When Auto Indent is on,

pressing Retum lines up text with the previous line. (A

check mark indicates that Auto Indent is on.)

Show Invisibles Displays the invisible characters as follows:

Tab A

Space 9%
Return 7

Menu commands 4)

9 Point
10 Point

etc.

Chicago

Courier

etc. The rest of the menu consists of a selection of the fonts

installed in your System file. Available font sizes are

outlined.

Note: Selecting a font and font size affects the entire
active window, not just the current selection in that
window. f '

Windows menu

The Windows menu lists all open windows. Selecting a window from the menu brings
that window to the top. The name of the target window is underlined. A check
indicates that a window contains changes that have not yet been saved.

Clipboard The Clipboard is always listed first, and appears even if
the Clipboard isn’t.open. You can therefore use this
menu item to open the Clipboard. The pathname of the
Clipboard includes the directory that contains the MPW
Sheil.

Worksheet The Worksheet always appears second in the Windows
; menu. The menu item lists the full pathname of the

Worksheet.

User-defined menus

You can define your own menu commands with the AddMenu command, described

in Chapter 3. These commands can be appended to existing menus, or you can
create new menus.

42 Chapter 2: Basic Editing

LN

SSS

Editing with the command language
Almost all menu functions have equivalents in the command language. In most
respects, there is no difference between the menu items and their command-
language equivalents. The primary difference is that with the command language,
you enter commands in the active (topmost) window, and the editing command acts
on a selection in another window. You can explicitly name a window as a parameter
tothe command. If you don’t specify a window, the command acts on the target
window (the second window from the top).

For example, to use command-language techniques to edit the file SysTypes.r, you
must first open that file, and then click on another window, such as the Worksheet
window, to make it the active window. You'll enter your commands in the active
window, as shown. in Figure 2-2, When you select text in the active window, it’s
highlighted in the normal Macintosh fashion. In other windows, selected text is
indicated by dim highlighting (outlining), as shown in the target window in
Figure 2-2.

é File Edit Find Format Windows

type ‘PRUA’ (
boolean;
boolean dontNeedLock, needLock;
boolean dontNeedTime, needTine;
boolean dontNeedGoodbye, needGoodbye;
bool ean noStatusEnabie, statusEnabie;
boolean noCtiEnable, ctlEnable;
boolean nokr i teEnable; wri teEnable;
boo! ean noReadEnable, readEnabie;
bute = 0:

Figure 2-2
Text highlighted In the active window and target window

Editing commands generally act on a selection. (The Find command simply creates
a selection—“DRVR” in this example.)

Editing with the command language 43

The § metacharacter (Option-6) is the current selection character—it indicates
the current selection in a window. For example, the following command erases from
the current selection or insertion point in the target window to the end of the window:

Clear §:0

The infinity character, œ (Option-5). is a selection operator that indicates the end of
a window, as described in Chapter 4. The Clear command given above is so useful
that you may want to add it as a menu item—see Chapter 3 for a description of adding
your own menu items to MPW.

44 Chapter 2: Basic Editing

a.

foe

Chapter 3

Using the Command
Language

Overview xx

Types of commands xx

Entering and executing commands xx

Structure of a command xx

Command name x

Parameters x

Command terminators x

Comments x

Simple versus structured commands x

Running an application outside the Shell environment xx

Command files xx

Special command files xx

The Startup and UserStartup files x
Suspend, Resume, and Quit x

Command aliases xx

Executable error messages x

Variables xx

Predefined variables x

Variables defined in the Startup file x
Parameters to command files x

Defining and redefining variables x

Exporting variables x

Command substitution xx

Quoting special characters xx

How commands are interpreted xx

Structured commands xx

Control loops: x
Processing command parameters x
Expressions x

Filename generation xx

Redirecting Input and output xx

Standard input x
_ Terminating input with Command-enter x

Standard output x
Diagnostic output x

Pseudo-filenames x

Defining your own menu commands xx

Sample command files xx

“AddMenuAsGroup” x
a Cc” x

46 Chapter 3 : Using the Command Language

pe

ZTN

ai

So far, we’ve introduced only isolated groups of commands without treating the
Shell’s command language as a whole. This chapter describes the complete syntax of
the MPW command language and explains its use. The commands. themselves are
described in Chapter 9, “Command Reference.”

Overview

Besides the built-in commands already introduced, the command language
provides the following features:

built-in and user-definable variables of the form {variableNama

command aliases, used to create alternate names for commands

command substitution, by which commands enclosed in back quotes, ~...~, are
replaced by their output

a quoting mechanism for disabling special characters or inserting invisible
characters in text: ð literalizes a single character; '...' and "..." quote strings
an extensive set of structured commands for controlling the order of command
execution, including Begin...End, If...Else...End, and For...In...End

filename generation with “wildcard” operators such as = and ?
u redirection of input and output with the <, >, >>, 2, and 22 operators

When you enter command text, the Shell first interprets and processes all special
symbols, before actually running the command. The order of interpretation is
explained later in this chapter under.“How Commands Are Interpreted.” For the
most part, the order of presentation in this chapter follows the order of
interpretation by the Shell.

In order to begin using MPW, you should read the following of this chapter sections
as a minimum:

the opening sections of the chapter, which describe the basic form of all
commands: “Types of Commands,” ‘Entering and Executing Commands,” and
“Structure of a Command"

“Command Files” and "Special Command Files”

“Variables”

“Quoting Special Characters”

The operators and syntax of the command language are summarized in Appendix C.

Overview 47

Types of commands

In all, four kinds of commands are provided:

a Built-in commands, such as Files or Duplicate, are part of the MPW Shell.

m Tools, such as Link or Asm, are executable programs (that is, separate files on the
disk) that are fully integrated with the Shell environment.

Command files, such as Startup, are text files that contain commands. You can

combine any series of MPW commands in a text file, and execute the file by

entering its filename, just like any other command, You can also pass parameters
to a command file and use them in commands within the file.

Applications, such as ResEdit or MacPaint™, are stand-alone programs that can
be launched from the Shell, but run outside the Shell environment

To execute a tool, application, or command file, the proper program file needs to
be on your disk. .

> Note: A built-in command overrides a command file or executable program
with the same name. You should therefore use either full pathnames or quotes to
specify a command file or program with the same name as a2 built-in command.
(Quotes work for this purpose because the names of built-in commands must.
appear unquoted—see “Quoting Special Characters” later in this chapter.)

Entering and executing commands
Pressing the Enter key executes command text. You can select command text on the

screen and press the Enter key to execute the selected text. If no text is selected,
pressing Enter executes the entire line that contains the insertion point

Important

If no text is selected. pressing Enter always passes the entire line to the Shell (or
to whatever other program happens to be reading from the conscie—this rule
also applles to your own Integrated programs that run within the Shell).

Caution

if you enter a line that ends with the Sheil escape character, 3, the command

interpreter will pause. waiting for the rest of the iine.

The Enter menu item and the key combination Command-Return both have the

same effect as the Enter key.

48 Chapter 3 : Using the Command Language

All commands return a status value: 0 indicates successful completion; nonzero
values usually indicate an error. This value is returned in the {Status} variable,
described later in this chapter.

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either
space or tab characters.) The first. word is the name of the command, and each word
that follows is passed as a parameter to the command. The general form of a simple
command is- ;

commandName_ { parameters...) _ commandTerminator

Each of these elements is described below.

Command name

The command name is either the name of a built-in command or the filename of
the program or command file to execute. The command name is passed as
parameter 0, and can be referenced by command files in the variable {0},
„explained below under “Variables.” Command names are not case sensitive.
Alternate names can be defined for a command—see “Command Aliases” in this
chapter for information.

aaaeeeaa
Parameters

Each of the subsequent words in a command is a parameter to the command or to
the Shell. You can reference parameters within command files by using the variables
{1}, {2},...{}. Gee Table 3-4.) Note that certain parameters, such as VO
redirection, are interpreted by the Shell, and never seen by the program. Variables
are also interpreted before being passed tò the program.

By convention, there are two distinct types of parameters to commands: options
and files. See the “Command Prototype” section at the beginning of Chapter 9 for
more details on these conventions.

Structure of a command 49

Command terminators

Each command is normally terminated by a return character. Commands can also

be terminated by the pipe symbol (|), the conditional execution operators (&&

and | !), or the simple command terminator (;). Each of these symbols may be

followed by a return. Table 3-1 describes the command terminators in order of

precedence. l

Table 3-1
Command Terminators
i tt

cmd1 | cmd2 Saves the standard output of cm./1 in a temporary file and uses it as the

standard input of cmd2. (Standard I/O is explained later in this chapter.)

Note: In MPW, unlike UNIX systems, the commands execute sequentially.

cmd] && cmd2 Executes cmd2 only if cmd1 succeeds (that is, returns a status value of 0).

cmdi | | cmd2 - Executes cmd2 only if cmd1 fails (returns a nonzero status value).

cmd1 ; cmd2 Executes cmd1 followed by cmd2; this terminator allows more than one

command to appear on a single line.

These command terminators may be applied to both simple and structured

commands. They all group from left to right. Parentheses can be used to group

commands for conditional execution and pipe specifications. Some examples

follow.

Files | Count -1

This command pipes the output of the Files command (a list of files and directories)

to the Count command, which counts the lines in the list.

(Asm Sample.a && Link Sample.a.o ~o Sample.code) |}. @

(Echo Failed; Beep)

This example begins by assembling Sample.a. If that operation succeeds, it links the

object file; but if the assemble-and-link operation fails, it echoes the message

“Failed”, and beeps.

% Note: You can continue a command onto the next line by typing ð (Option-D)

followed by a return. Both characters are discarded when the line is interpreted.

(For more information about the ð escape character see “Quoting Special

Characters” in this chapter.)

Except as modified by structured commands, commands are read sequentially and

executed as they are read.

50 Chapter 3: Using the Command Language

oN

Comments l l
Thè number’sign (#) indicates a comment. Everything from the # to the end of ihe
line is ignored. (Comments always end at the next return, even if the return is
preceded by a 3.)

Simple versus structured commands

All of the commands introduced so far have been simple commands. Simple
commands consist of a single keyword, followed by zero or more parameters. Simple
commands are distinguished from structured commands—commands such as `
For and If, which let you control the order in which other commands are executed.
All of the structured commands are built-in, and usually have more than one
keyword. The entire structured command is read before its execution begins. For
example,

For file In =.c; Count {file}; End

For information, see “Structured Commands” in this chapter.

ee
Running an application outside the Shell environment
You can run an application outside the MPW Shell environment by executing the
program name just like any other command. For example, .

ResEdit

The application is loaded and launched as if it had been started from the Finder, Any
files specified as parameters are passed to the Program via the application parameter
handle, in Finder fashion. (See ‘Finder Information” in the Segment Loader chapter
of Inside Macintosh.) The following option is available on the command line: -

-p file... Tell the program to print the specified files.

For example,

MacPaint -p "HD:Screen 1" "HD:Screen 2"

This command tells the Sheil to run MacPaint (assuming MacPaint is in the directory
MPW:Applications:), and to print the files Screen 1 and Screen 2.

The Shell environment is saved when the application is launched and restored when
the application terminates. (These actions are performed by the Suspend and
Resume command files, described below.)

Running an application outside the Shell environment 5]

Caution

Running an application from a command file terminates the command file.

Command files

You can create your own commands by writing text files of previously defined

commands. You can execute such a file just like any other command within the Shell
environment—the name of the file you created is the name of the new command.

For example,

Date

Echo VOLUMES... 0. ccc ee eee eee etter eee eee een eeeaee
Volumes 7

Echo Current Directory... .. cece ec ee centers eet eens

Directory .

Echo Filesesrroospe i nEn E ES E DEE
Files

If this text is on the screen, you can execute it by selecting it and pressing the Enter

key. You could also save this text as a command file so that it’s always available. To.

save it under the name “Info”, for example, you could first select the command text,

and type the following command in another window:

Duplicate § Info

You can now execute this series of commands by entering the command name info.

You can pass parameters to a command file just as you. would to a predefined
command, using the normal Sheli syntax:

filename | parameters... |

Parameters can be referred to within the command file by using the built-in variables
1}, {2},...{7}, explained below under “Parameters to Command Files.”

$2 Chapter 3: Using the Command Language

N

E

» Note: As a matter of convenience, command files (as well as applications and

tools) are usually kept in directories that the Shell automatically searches when 2

partial pathname is given for a command name. This convention allows you to

invoke the command by using its simple name instead of its full pathname. The

Shell variable {Commands} contains a comma-separated list of directories to be

searched; you can easily modify it to include additional directories.

EEL
S rrr

Special command files

The files described in this section are provided with MPW. You can modify

commands in each of these files to suit your needs.

Oe

important

Each of these files must be in the same directory as the MPW Shell, or in the

System Folder. .

u aaa

The Startup and UserStartup files

When you start up the Shell, commands are initially read from a file named Startup.

The Shell executes the commands in Startup as if you had entered them interactively.

The Startup file provided with MPW contains several default variable and alias

definitions. You can modify the commands in Startup to suit your own needs; for

instance, you can change the default pathnames to suit-a special directory

configuration.

Startup executes another command file called UserStartup. It’s recommended that

you use this file for your own changes and additions to the startup sequence. You can

redefine the variables defined in Startup, set and export any number of additional

command-language variables, and define aliases and add-on menus. Aliases and

variables are fully described in the following sections.

i

Suspend, Resume, and Quit

When you mun an application from the Shell, commands are read from the file

Suspend. When you quit the application and return to the Shell, commands are read

from the file Resume. The Suspend and Resume files save state information about

variable definitions, exports, aliases, and windows before running an application,

and restore the state after returning to the Shell.

When you quit from the Shell, commands are read from the file Quit. The Shell

executes these commands before closing any windows.

Special command files 53

“+ Note: If you cancel from the Quit command, the Quit file will already have been

executed.

Like Startup and UserStartup, these command files run as if you had entered the
commands interactively. You can modify them to suit any special requirements you
might have.

Command aliases

An alias is an alternate name for a command (and possibly some parameters). The
Alias command is used to define aliases, and to display the list of aliases. If an alias
has been defined, it will be recognized by the command interpreter and the
corresponding definition will be substituted.

> Note: Variable substitution and alias substitution occur on the alias definition

itself, after it has been substituted.

The following commands are used to define and undefine aliases:

Alias name word... Name becomes. an alias for the list of words (a command

may consist of more than one word).

Alias name Displays any alias definition associated with name.

Alias Displays ali alias definitions.

Unalias name Removes any alias definition associated with name.

Unalias Removes all alias definitions.

Aliases are local to the command file in which they are defined (and are globally

available if they are defined in the Startup file). Aliases are automatically inherited
from enclosing command files, and may be redefined locally. However, aliases
redefined locally will revert to their previous value when the command file
terminates.

See the Alias and Unalias commands in Chapter 9 fora complete specification of
aliases and additional examples.

Executable error messages

The following alias is defined in the Startup file:

Alias File Target

That is, the word “File” is defined as an alias for the Target command, which opens a
file as the target window. (See “Editing With the Command Language” in Chapter 2.)

This alias is useful when a compiler returns an error message such as

54 Chapter 3 : Using the Command Language

a

File "Count.c" ; Line 73 # Not a parameter name: counts

By selecting the entire line and hitting the Enter key, you'll automatically open the

specified file as the target window, find and select the offending line, and bring the

window to the top. The command that the Sheil actually executes is

Target "Count.c"™ ; Line 53

(“Line” is a command file, which automatically finds and selects a line by number

and then brings the target window to the top.)

e y kl a} y l m

Variables

The Shell provides several predefined variables and allows you to declare any

number of additional variables. Variables are used for

m shorthand notation

m providing status information

= local variables in command files

™ parameters to command files and tools

u setting certain defaults for the MPW Shell

You can define or redefine variables with the Set command, and remove variable

definitions with the Unset command. For example,

Set PFiles HD:MPW:PFiles: :

This command defines a variable {PFiles} with the value “HD:MPW:PFiles:”.

Variables have strings as their values. You can reference them by using the notation

{name, where name is the name of the variable. When a command containing 2

variable {namą is executed, (nama is replaced with the current value.of the

variable. For example,

Files {PFiles}Sre.p

In this example, {PFiles} is replaced with its definition before the command is

executed.

A variable may form one or more words, or part of a word. If a variable is undefined,

{nam@ is removed (that is, replaced with the null string).

Variable names are case insensitive, and can’t include the right brace character (}),
for obvious reasons. It's wise to avoid using any special characters in variable

names—future extensions to the command language may assign special meanings to

some of these characters. -

Variables 55

Predefined variables

Table 3-2 lists the variables defined by the MPW Shell. These variables provide the
Status value returned by the last command, and the pathnames of several files and
directories,

Table 3-2
Variables defined by the Sheil
Sa aUnEnnCnneeeee eee LU
{Status} Result of the last command executed. (A value of 0 means successful i

completion. Any other value is an error code: Typically, 1 means an error in L
parameters, and 2 means that the command failed.)

{Boot} Volume name of the boot disk.

{Active} Full pathname of the current active window.

{Target} Full pathname of the target window (that is, the second window from the
top—by default, this is the window where editing commands take effect).

{Worksheet} Full pathname of the Worksheet window.

{SystemFolder} Full pathname of the directory that contains the System and Finder files.

{ShellDirectory} Full pathname of the directory that contains the MPW Shell.

{Command} Full pathname of the last command executed. (For built-in commands, this is
the name of the command.)

Variables defined in the Startup file

Table 3-3 lists the variables that are defined in the Startup file (described in the
“Special Command Files” section in this chapter). These variables define pathnames
and default setings to the Shell, and are referenced by the Shell and by some of the
Workshop tools. You can change any of these definitions to suit your own needs.

LOS

% Note: Hierarchical file system (HFS) pathname conventions are described in
Chapter 1.

Table 3-3
Variables defined in the Startup file
prt

Variables referenced by the command interpreter:

{MP W} The volume or folder containing the Macintosh Programmer’s Workshop.
Initially set to " {Boot }MPW:",

56 Chapter 3 : Using the Command Language

{Commands}

{Exit}

= {Echo}

{Test}

A list of the directories that the Shell searches when looking for a command to
execute. Directories in the list are separated by commas. A Single colon
indicates the default directory. {Commands} is initially set to

:, {MPW}Tools:, {MPW}Applications:

—that is, the current directory, then HD:MPW:Tools, and then
HD:MPW:Applications.

When {Exit} is set to a nonzero value, command files terminate whenever a
command returns a nonzero status. This nonzero status is returned as the status
value of the command file. (See the {Status} variable in Table 3-2.) {Exit} is
initially set to 1.

When {Echo} is set to a nonzero value, commands are written to diagnostic
output after variable substitution, command substitution, and filename
generation, and just prior to execution. This capability is useful for watching
the progress of a command file and for debugging command files—as the first
line of your file, you would include the line

Set Echo 1

{Echo} is initially set to 0..

When {Test} is set to a nonzero value, the command interpreter executes. built-
in commands and command files, but not tools or applications. {Test} is
useful for checking the control flow in command files. C's most useful if
{Echo} is also nonzero.) {Test} is initially set to 0.

Variables referenced by the editor: .

, {CaseSensitive}

{Tab}

{WordSet}

aa

{PrintOptions}

Any nonzero value specifies case-sensitive pattern matching. (CaseSensitive}
is initially set to 0 (that is, false). You can also set {CaseSensitive} by selecting
the “Case Sensitive” item from the Find menu. (See Chapter 2.)
Default tab setting for new windows (initially 4).

The set of characters that constitute a word to the editor (for Find and Replace
menu commands, and for word selection by double-clicking). By default,
{WordSet} is set to the characters a-z, A-Z, 0-9, and _ (underscore). If a
character is not in the list, the editing commands regard it, like a blank, as a
break between words.

Options used by the Print Window and Print Selection menu commands.
Initially set to ‘-h', (The -h option prints pages with headers. For more
information on possible print options, see the Print command in Chapter 9.)

Pathnames for libraries and include Jiles:

iRIncludes}

ae

The directory that contains Resource Compiler (Rez) include files. Initially set
to "{MPW}RIncludes:".

Variables §7

{Alncludes}

{Libraries}

{CIncludes}

{CLibraries}

{PInterfaces}

{PLibraries}

The directories to search for assembly-language include files, referenced by
the Assembler. Initially set to "{MPW}AIncludes:”.

The directory that contains shared library files. Initially set to
"{MPW)}Libraries:”.

The directories to search for C include files, referenced by the C Cotapiler
Initially set to "{MPW}CIncludes:".

The directory that contains C library files. Initially set to
“{MPW}CLibraries:".

The directories to search for Pascal interface files, referenced by the Pascal
Compiler. Initially set to "(MPW}PInterfaces:"

The directory that contains Pascal library files. Initially set to
“(MPW}PLibraries:".

% Note: For variables such as {Exit} and {CaseSensitive} that can be either “true”
or “false,” the variable is considered “true” if it is set to anything other than zero
or the null string (a string of length zero). The variable is considered “false” if it
is set.to zero, null, or undefined. The best way to set one of these variables is as
follows:

Set Exit 1

Set Exit 0

turn {exit} on

turn {exit} off

(These values also apply to expressions that return a boolean value, defined later
in this chapter under “Structured Commands.")

Parameters to command files

When a command file is executed, its parameters automatically set the value of
certain Shell variables. These variables are explained in Table 3-4.

Table 3-4
Parameters to command files

{#}

{Parameters}

{"Parameters"}

Name of the currently executing command file.

First, second, (or mh) parameter passed to the current command file. (These
values are null for commands entered interactively.)

Number of parameters (excluding the command name).

Equivalent to {1} {2} ...{m}.

Equivalent to "{21}" "{2}" ..."{#}". This form should be used if the
parameters could contain blanks or other special characters.

Chapter 3 : Using the Command Language

7

The {Parameters} variable is especially useful when the number of parameters is
unknown. The quoted forms, such as "{1}" or {"Parameters"}, are usually preferable
to the unquoted forms because, after variable substitution, {1}, {2}, and so on could
contain blanks or other special characters. For example, consider the Line
command file (which is useful with error messages as explained: above under
“Executable Error Messages”):

Find "{1}" "{Target}" # Find line n in the target window.

Open "{Target}" # Make the target window the active ð
(top) window. A

This command file takes one parameter, a line number.Parameter {1} is quoted to
handle the case where Line is called without any parameters. In this case the value of
(1} is the null string, and without the quotes the {1} would completely disappear,
leaving the name of the target window as the only parameter to Find. The quotes
ensure that at least a null string is sent to Find as its first parameter—this is essential,
because the window name must be the second parameter. Also notice that the
{Target} variable is quoted, because it’s a filename that might contains blanks or
other special characters. (For more information on quoting rules, see “Quoting
Special Characters" later in this chapter.)

Defining and redefining variables
The following commands are used to define and modify variables:

Set name value Assigns the string value to variable name.

Set name Writes the value of variable name to standard output.

Set Writes a list of all variables and their values to standard
output.

Unset name Removes the definition of variable name.

Unset Removes the definition of all variables in the current scope.
(For an explanation of the scope of a variable, see the next
section.)

ce a a ee ee E A
Caution

Removing ail variables in the outernost scope can have serious consequences.
For example, the Shell uses the variable {Commands} to locate MPW tools, and
the Assembler and Compilers use other varlables to help locate Include files.
Some variables, such as {Boot}, cannot be reinitiallzed without restarting MPW. e a a E T ae a

Defining a variable and making it available for use by command files and programs
involves two separate steps:

Variables 59

1. You can define a variable with the Set command. Note that variables are local to

the command file in which they are defined-——a variable definition ceases to exist
when its command file terminates.

2. You can pass a variable to command files and tools with the Export command.
After you export a variable, nested command files can reference that variable,

and may override its value locally—but any redefinition is strictly local, and
terminates when the command file terminates. It’s impossible to affect the value of

a variable in an enclosing command file. (See Figure 3-1.)

Exporting variables

The Export command makes variables available to command files and tools:

Export name... Exports the named variables.

Export Writes the list of exported variables to standard output

You can define a variable globally by setting its value in the Startup file and exporting
it. Figure 3-1 illustrates how Export works.

60 Chapter 3 : Using the Command Language

#-UserStartup File-

Set var X

Export var

{var} = "x"

ACommandFile

ACommandrile

Set var Y

Export var

ANotherCommandFile

ANotherCommandrile

{var} = "y*

Set var Z

Export var

{var} = "z"

{var} = "y

¥ {var} = myer

Figure 3-1
Trafficking In varlables

Startup can be thought of as the command file enclosing all other commands
including interactive commands).

Command substitution ól

% Note: You can use the Execute command to execute a command file without

creating a new scope for variables, exports, and aliases. The Shell “executes” the
Startup, Suspend, Resume, and Quit command files, and Startup uses Execute to
run the UserStartup script. For more details about Execute, see Chapter 9.

Command substitution

Command substitution causes a command to be replaced by its output. You can
specify command substitution by enclosing one or more commands in back

quotes, `... (*/~).. When the command is executed, the standard output of the
enclosed commands replaces the ~...~. Command substitution can form part of a
word, a complete word, or several words. Command substitution is not done within
“hard” quotes (that is, the standard single quotes '...').

% Note: If the standard output of the enclosed commands contains return
characters, the returns are replaced by blanks. If the output ends with a return,
this return is discarded.

For example, the command

Echo The date is `Date`

echoes the parameters, replacing the Date command with its output, as follows:

The date is Wednesday, October 22, 1986 10:40:00 PM

The following example duplicates the files whose names are output by the Files
command:

Duplicate “Files -t MPST MyDisk:~ "{MPW}Tools"

“Files -t MPST MyDisk:` is replaced with a string of filenames of type MPST
(that is, MPW tools) before the Duplicate command is executed; these files are then

copied to the folder ({MPW})Tools. This command is useful because the Files
command allows you to specify files with a certain type or creator, which you can’t do
with wildcard operators.

Quoting special characters

There are numerous characters that have special meanings to the MPW Shell.
Normally, the Shell performs the action indicated by the special. character—but you
can disable a character's special meaning (that is, include it as a literal character) by
quoting it. You commonly need quotes when specifying filenames that contain
blanks or other special characters, or when searching for the literal occurrence of a
special character.

62 Chapter 3 : Using the Command Language

N

oS

Table 3-5 lists all of the special symbols recognized by the Shell.

Table 3-5
Special characters and words

Character Meaning Where described

Space Separates words . “Structure of a Command"
Tab Separates words

Return Separates commands “Structure of a Command”
; Separates commands (Table 3-1)
! Separates commands, piping output to input
&& Separates commands, executing the second if the

first succeeds
iI Separates commands, executing the second if the

first fails
G9 Command grouping; grouping in filename

generation

Comments “Structure of a Command’

Escape character: quotes the following character this section
Tasi Quotes all other special characters (Table 3-6) rr Quotes other special characters, except 9, {, and `
ich Quotes other special characters, except ð, {, and `
AN Quotes other special characters, except ð, {, and `

baal Variable substitution , “Variables”

ee Command substitution “Command Substitution”

? Matches any character in filename generation “Filename Generation”
= Matches any string in filename generation
(...] Character list in filename generation
. Zero or more repetitions in filename generation
+ One or more repetitions in filename generation
«> Specified number of repetitions in filename

generation

< Input file specification “Redirecting Input and Output” ‘
> Output file specification (Table 3-10)
>> Output file specification (append)
2 Diagnostic file specification
22 Diagnostic file specification (append)

Reserved for future use

‘Note. Within regular expressions (/.../ or \...\), a number of characters not listed here are also
considered special. See “Pattern Matching” in Chapter. 4 for details.

Quoting special characters 63

You can literalize a character by preceding it with the Shell escape character, ð
(Option-D), or by including it within the quote symbols *...',"...", /.../, or \...\. The

escape character, 0, quotes a single character only; the other quote symbols may be

used to quote: part or all of a word: These symbols are described in Table. 3-6.

Table 3-6
Quotes

dc Escape character: Take the single character c literally. (Return is discarded, allowing
you to continue a command onto the next line.

Note. The combinations ðn, dt, and of are exceptions to this pattern: they are used

for inserting return, tab, and form feed characters, respectively.

roe “Hard quotes”: Take the enclosed string literally—no substitutions occur. The quotes
are removed before execution,

Haon “Soft quotes”: Take the enclosed string literally. dc, variable substitutions, and
command substitutions occur. The quotes are removed before execution.

J... or NaN Regular expression quotes: Normally used to enclose regular expressions. Take the
entire string literally, including the quote characters—the / or \ characters are not
removed. Variable substitutions and command substitutions occur. '...', "...", and ð

have their usual meanings—however, they are not removed.

Single quotes, double quotes, and ð are removed before parameters are passed to
programs (unless they are themselves enclosed in quotes). For example, here is how

you could define an AddMenu that compiles a.C program in the active window:

Wrong:

AddMenu Extras "C Compile" C "{Active}"

Right:

AddMenu Extras "C Compile” 'C "{Active}"™"

The first example won’t work because the {Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is executed). The second
example is correct—when the AddMenu command is executed, the single quotes
defeat variable expansion; they are then stripped off before the item is actually
added. The double quotes remain, in case the pathname of the active window
happens to contain any special characters.

“» Note: When quoting spaces (as in filenames), you'll usually use the *..." form of
the quotes, to permit variable and command substitution.

Slashes (or backslashes} are used-to pass regular expressions as parameters to

commands, without filename expansion occurring. For example,

Search /proc=/ Sample.p

64 Chapter 3: Using the Command Language

gies / s

This command searches the file Sample.p for any string beginning with the
characters “proc”. (See “Pattern Matching” in Chapter 4 and the description of the
Search command in Chapter 9.)

How commands are interpreted

When you send text to the command interpreter (by pressing the Enter key or the

equivalent), the following sequence of steps is performed:

1. Alias substitution.

z. Evaluation of control constructs. (This means that control constructs can’t be
produced by command substitution, for instance.)

3. Variable substitution, command substitution. All variables (unquoted or
quoted with *...", /.../, or \...\) are replaced with their value. Ail commands

enclosed in ~...~ (unquoted or quoted with "...", /.../, or \...\) are replaced with
their output.

4. Blank interpretation. After variables and commands have been substituted, the
._ command text is divided into individual words separated by blanks. A blank is an

unquoted space or tab.

Note: The following symbols are normally considered separate words, whether
or not they are set off by blanks:

; l | 4 && (})- < > >> 2 22

Within expressions (used with If and Evaluate), all operators are considered
separate words, unless they are quoted—see “Structured Commands’ in this

chapter. .

5. Filename generation. A word that contains any of the unquoted characters ?, =, `

[, *, +, or « after variable substitution is considered a filename pattern. The word
is replaced with an alphabetically sorted list of the filenames that match the
pattern. Qf no filename is found that matches the pattern, an error results.)

6. Input/output redirection. Because this step is performed last, variable
substitution, command substitution, and filename generation can all be used to

form the filenames used in I/O redirection.

7. Execution. -

Any part of this process can be suppressed by using quotes as described in the
previous section. Single and double quotes are removed prior to. execution.

Structured commands

Structured commands

Structured commands (listed in Table 3-7) override the normal sequential execution
of commands. They can be used interactively and within command files. They may
be nested arbitrarily deeply (subject to a limitation on stack space), The entire
structured command is read before execution begins.

Caution:

After the Shell “executes” an opening parenthesis or the opening word of a
Begin, If. For, or Loop command, It will not execute any subsequent commands
until a matching closing parenthesis or End word is encountered. While it is
waiting for the end of the command. the status panel of the Worksheet window
will contain the left parenthesis character, (. or the command name. You can
abort the entire structured command by typing Command-period.

The status value. for a structured command is the status of the last command executed

within the structured command (except for the Exit command, which lets you set

your own status value).

©% Note: Expressions (used in If, Break, Continue, and Exit) are defined in the
section following the table.

Table 3-7 >
Structured commands

(command...) Parentheses are used to group commands for conditional execution, pipe
specifications, and input/output specifications.

Begin...End Begin

End

Like parentheses, Begin and End group commands for conditional
execution, pipe specifications, and input/output specifications.

If... If expression

command...

[Else If expressi
command...) ..;

[Else

command... }

End —

Executes the commands following the first expresston whose value is true
(that is, nonzero and non-null). At most one of the lists of commands is

executed. If none of the commands is executed, If returns a status value of 0.

66 Chapter 3: Using the Command Language

For... ; For name in word...
commana...

End

Executes the enclosed commands once for each word from the “In word...”
list. For each iteration, a variable of the form {mame} represents the
current value from the word... list. (See the examples below.)

Loop...End Loop.
command...

End

Repeatedly executes the enclosed commands. The Break command is used
to terminate the loop.

Break Break [If expression }

Terminates execution of the immediately enclosing For or Loop. If the
expression is present, the loop is terminated only if the expression
evaluates to true (nonzero and non-null), f

Continue Continue [If expression }

Terminates this iteration of the immediately enclosing For or Loop and
continues with the next iteration. If the expression is present, the Continue
is executed only if the expression evaluates to true (nonzero and non-null).

Exit ` Exit [number] [If expression }

Exit terminates execution of the command file in which it appears. If
number is present, it is returned as the status value of the command file,
otherwise, the status of the last command executed is returned, If the
expression is present, the command file is terminated only if the expression
evaluates to true (nonzero and non-null). (You can also use Exit
interactively, to terminate execution of all previously entered commands.)

The return characters in the command definitions above are significant—a retum must appear at the end of each line as shown above, or be replaced by a semicolon G).

The following keywords are recognized when they appear unquoted as the first word of a command:

Begin For If Else Loop End Break Continue Exit
The keyword “In” is recognized when it appears unquoted following For, the keyword “If” is recognized when unquoted following Else, Break, Continue, and Exit. These keywords are not considered special in other contexts and need not be quoted.

Structured commands 67

% Note: These keywords can’t be produced as a result of variable substitution or

command substitution.

You can apply conditional execution (&& and | |), pipe specifications Ci), and

input/output specifications (<, >, >>, 2, and 22) to entire structured commands

(that is; to, Begin...End, If...Else...End, For...End, and Loop...End, and to

commands within parentheses). The operator should appear following the End word

- or closing parenthesis. For example, you can collect the output of a series of

commands and redirect it as follows:

Begin

Echo Good day

Echo Sunshine

End > OutputFile

Input/output specifications are discussed later in this chapter. Each of the structured
commands is described in detail in Chapter 9.

Control loops

The For and Loop. commands are used for looping.

The For...End command executes the enclosed commands once for each word in the

“In word...” list. The current word is assigned to variable name, so you can

reference the current word by using the Shell variable notation, {name}. For -

example,

For File In =.c

C "{File}"-; Echo “{File}" compiled.

End $

The Loop command provides unconditional looping—you'll need to use the Break
command to terminate the loop. You can break from a loop and continue with the

next iteration with the Continue command. For example, the command file below

runs a command several times, once for each parameter.

68 Chapter 3: Using the Command Language

EE N

Repeat - Repeat a command for several parameters ### #

Repeat command parameter..
.

Execute command once for each parameter in the parameter # list. Options can be specified by including them in # quotes with the command name.

Set cmd "{1}"

Loop -

Shift

Break If "{1}" == "n
{emd} "{1}"

End :

In this example, the Shift command (explained in the next section) is used to step through the parameters, and the Break command ends the loop when all the Parameters have been used. Using command file Repeat, you could compile several C programs, with progress information, using the command
Repeat 'C -p' Sample.c Count. c Memory.c
Repeat might also be used to set the font and fontsize for all the open windows:
Repeat 'Font Courier 10' *Windows’*

Processing command parameters
In addition to the commands introduced in Table 3-7, there are several other commands that are highly useful in command files. The following commands are used to display or modify Parameters:

Echo (parameters...] Writes its parameters, separated by blanks and
terminated by a return, to standard output.

Parameters [parameters...] Writes its parameters, including its name, to standard
output. One parameter is written per line, preceded by
the parameter number in braces and a space. A return
is written following the last parameter.

Shift [number] Renames the parameters by subtracting number from
the parameter number; that is, parameters number+1,
number+2, and so on are renamed 1, 2, ete. If
number is not specified, the default value is 1. Shift
does not affect parameter {0} (the command name).

Structured commands 69

Echo and Parameters are useful for checking how your parameters will behave before

actually passing them to a command (for instance, to check how your quotes are
working out). For example

Parameters "="

For an example of how the various structured commands can work together, see
“Sample Command Files” at the end of this chapter.

Expressions

Expressions are used in the If command and in If statements in the Break, Continue,
and Exit commands. They're also used in the Evaluate command, which returns the
result of an expression.

Table 3-8 lists the expression operators in order of decreasing precedence (some
operators have several alternate symbols). Groupings indicate operators of the same
precedence.

Table 3-8
Expression operators

Operator Operation

1. (expr) Expression grouping

2. - Unary negation
~ Bitwise negation
! NOT ~ Logical NOT

3. Multiplication
+ DIV Division

% MOD Modulus division

4, + l Addition
= Subtraction

5. << Shift left
>> Shift right

6. < Less than
<= s Less than or equal
> Greater than
>= 2 Greater than or equal

z a= Equal
ta <> + Not equal

=~ Equal pattern (regular expression)
t~ Not equal pattern (regular expression)

70 Chapter 3 : Using the Command Language

8. & Bitwise AND

9. s Bitwise XOR

10. i Bitwise OR

11. && AND Logical AND

ic. OR Logical OR

All operators group from left to right. Parentheses can be used to override the
Operator precedence. Null or missing operands are interpreted as zero. The result of ~-
an expression is always a string representing a decimal number. Relational Operators
return the value 1 when the relation is true and the value 0 when the relation is false.
Logical operators. The logical operators !, NOT, ~, &&, AND, | |, and OR
interpret operands of value 0 or null as false and nonzero, non-null operands as true.
Numbers. Numbers may be either decimal or hexadecimal integers representable
by a 32-bit signed value: Hexadecimal numbers begin with either $ or Ox. Every
expression is computed as a 32-bit signed value. Overflows are ignored.
String operators. The operators ==, |=, =~, and !~ compare their operands as
strings. All others operate on numbers. For example

Tf {Status} != 0; Beep -3a,25,200; End

Comparing text patterns. The =~ (equal pattern) and !~ (not equal pattern)
_, Operators are like == and != (which compare two strings), except that =~ and !~ are

used for comparing a string with a text pattern, The right-hand side is a regular
expression against which the left-hand operand is matched. For example:

If "(1)" !~ /=, facp]/
Echo Filename must end with <a, .C, OF .p

End

“ Note: The regular expression must be enclosed in the regular expression quotes,
/.../. See Chapter 4, “Advanced Editing,” for more information about regular
expression syntax.

i

If the regular expression contains the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form {®n} containing the matched
substrings are created for each tag operator in the expression. (For an example, see
the implementation of a wildcard rename command under the description of the Rename command in Chapter 9.)

Use of special characters. Within expressions in the If, Break, Continue, Exit, and
Evaluate commands, the following Shell operations are disabled:
a Filename generation

a Conditional execution (|| and &&)

Structured commands 7}

a Pipe specifications (|)

e input/output specifications (>, >>, 2, 22, and <)

This allows the use of many expression operators that would otherwise have to be

quoted. For If commands, the conditional execution or I/O specification should

come after the End word. For other commands that contains expressions, you can

specify conditional execution or I/O redirection by enclosing the command in

parentheses. For example,

(Evaluate {1} + {2}) 2 Errors

——————————EEEEEEEEeE———— SSS > SSS

Filename generation

After variables have been substituted, a word that contains any of the characters

? ~ $ z + «

is considered a filename pattem. The word is replaced with an alphabetically sorted

list of filenames that match the pattern. An error is returned if no filename is found

that matches the pattern.

You can specify a group of file (or window) names with the “wildcard” notation given

in Table 3-9.

Table 3-9 f
Filename generation operators

? Matches any single character (except return or colon).

= Matches any string of zero or more characters (except return or colon).

[characterList] Matches any character in the list.

[~ characterList]. Matches any character not in the list.

> 0 or more repetitions @* is the same as =)

+ 1 or more repetitions

«...> Numeric range

> Note: The pattern matching is case insensitive.

% Note also: The pathname separator (:) must appear explicitly in the

pattern—the : character will never be substituted for ?, =, or [...].

These special characters are the same regular expression operators used in

editing commands. For a complete discussion of regular expressions, see Chapter 4,

“Advanced Editing.”

72 Chapter 3 : Using the Command Language

ta N

Naturally, you need to be careful with these wildcard operators. The Parameters and
Echo commands are very useful for double-checking which filenames a command
will generate. For example, before giving the command

Delete =.c.o

you might want to run the command

Parameters ~*.c.0 ;

This command lists your *.c.o” files to standard output so that you can make sure you
really want to delete them all.

*% Note: Wildcard characters only generate names that match existing filenames;
they do not create new files. For example, the following attempt to rename files
will not work:

Rename =.obj =.0

An example of how to perform a wildcard rename is contained under the
description of the Rename command in Chapter 9.

Redirecting input and output
All commands (built-in commands, command files, and tools) are provided with
three open files: standard input, standard output, and diagnostic output
(Figure 3-2). By default, standard input comes from the console; standard output
and diagnostics go to the window where the command was executed, immediately
following the command.

Standard < Command
input

Figure 3-2
Standard input and output

Redirecting Input and output 73

You can override these default assignments with the <, >, and 2 symbols described in
Table 3-10. Note that input and output specifications are interpreted by the Shell;
they are not passed to programs as parameters. Parentheses can be used to group
commands for input/output specifications.

Table 3-10
/O redirection

< name Standard input is taken from name.

> name Standard output replaces the contents of name. File name is created if it doesn’t
exist.

>> name Standard output is appended to name. File name is created if it doesn’t exist.

2 name Diagnostic output replaces the contents of name. File name is created if it doesn’t

exist.

22> name Diagnostic output is appended to name. File name is created if it doesn’t exist.

Files and windows are treated identically—when given a name, the system looks first .
for an open window. Input and output can also be applied to selections:

a § indicates the current selection (in the target window).

a name.§ indicates the current selection in window name.

From the point of view of a tool running within the Shell environment, input always
comes from the standard input file and output goes to the standard output file. The
program doesn’t need to know whether standard input happens to be text from a file,
from a window, or typed in from the keyboard. For example, in the statement _

Program > OutputFile ©

the string “> OutputFile” is interpreted by the Shell and is not passed as a parameter
to the program--this process is completely invisible to the program.

I/O specifications also apply to command files. The standard input, standard
output, and diagnostic output files provided to a command file become the defaults
for commands in the file. l

For more on input and output, see “Standard Input/Output Channels” in

Appendix F.

74 Chapter 3 : Using the Command Language

i ee
Standard input

By default, standard input comes from the console. Normally, you supply this input
by typing text and pressing Enter, or by selecting text that is already on the screen
and pressing Enter. You can redirect standard input with the < operator. Note,
however, that most commands that read standard input also accept a filename
parameter. Por example, the following two commands have the same result:

Catenate < Sample.c
Catenate Sample.c

Therefore, the < operator is provided for completeness, and not because it provides significant new functionality. Many commands, including the Assembler and
Compilers, optionally read standard input to allow input to be read from a pipe (i)
or entered interactively, as explained in the next section.

Terminating input with Command-Enter

Many commands read from standatd input if no filename is specified. For example, if you execute the command

. Asm

the Assembler will begin reading from standard input—that is, you can enter text to it, and it will process each line as you enter it.

You can repeatedly enter text to a program that reads standard input, by typing or selecting text and pressing Enter. End-of-file is indicated by holding down the Command key and pressing Enter. For example, after you execute the command
Catenate >> {Worksheet}

the Catenate command will be running (its name will appear on the status panel at the bottom of the window). You can now enter data from the keyboard or select and enter text from various windows, and all of it will be concatenated to the Worksheet window. Command-Enter indicates end-of-file and terminates the command.

a
S tandard output

By default, standard output appears in the active window immediately following the
command. When commands are executed from menus, standard output appears following the selection in the active window. You can redirect standard output with
the > and >> operators. For example,

Catenate Filel File2 > CombinedFile

Redirecting Input and output
>

The Catenate command concatenates File2 to File]—-but instead of sending the

output to the active window, it is sent to the file named CombinedFile. If window
CombinedFile is open on the desktop, its contents are overwritten. Otherwise, file

CombinedFile is replaced (or created if it doesn’t exist).

The >> operator appends standard output to the end of a window or file. If the named.
file doesn’t exist; a new file is created. For example,

Catenate § >> AFile

appends the contents of the current selection to AFile. (if the command was entered
in the activé window, the current selection is the selection in the target window.) You

can also specify a selection in a named window:

Catenate Sample.c.§ >> AFile

Diagnostic output

By default, a command's diagnostic output also appears immediately after the
command, interleaved with standard output. The diagnostic output of commands

executed from menus appears following the selection in the active window. You can
redirect diagnostic output exactly as you redirect standard output, except that you use
the operators 2 and 22 in place.of > and >>. You may find it useful to have all error

reporting appear in a separate window set aside for that task. For example, in
Figure 3-3, the Assembler has been nin, and error and progress information has

been appended to the Errs window.

é File Edit Find Format Windows

HD:MPW:Worksheet [=

[Hew shell Ko]
HO:MPW:RExamples:errs

.. continuing with sample.a

.. including HD: MPW:Alncludes:QuickEqu.a

. continuing with. sample.a
-including HD: MPW:Aincludes: SysEqu.a
continuing with sample.a

QUI CKDRAW
GLOBALDATA
SETUPNENUS
SHONABOUTMED I ALOG
ANANMMANN

76 Chapter 3 : Using the Command Language

rams

Figure 3-3
Redirecting diagnostic output

asas a aaa OU P seudo-filenames

Pseudo-filenames are 2 set of device names that you can use in place of filenames, but that have no disk files associated with them. Any command can open a pseudo- filename as a file. These device names are most. commonly used for VO redirection.
Table 3-11 shows the available pseudo-filenames,

Table 3-11
Pseudo-fllenames

Dev:Console Always refers to the current console device, The console is the default source of
input (that is, entered text) and the default destination of output (that is, the active window).

Dev:Null Null device. If you read from Dev:Null, it immediately returns end-of-file. If you
write to Dev:Null, output is thrown away.

Dev:StdIn Default input stream. |
Dev:StdOut Default output stream.

Dev:StdErr Default diagnostic output stream.
The last three names, Stdln, StdOut, and StdErr, are used to explicitly represent. input and output. You can use these Specifications, for example, to send a command's output and diagnostics to the same file:

Search /NULL/ =.c > Found > Dev: Stdout

Because the Shell opens standard input, standard output, and diagnostic output in the order they appear, file Found is open first, then diagnostic output is redirected to the same file. The following command has the same effect:

` Search /NULL/ #.c > Found > Dev: StdErr

However, if the filename and pseudo-filename specifications are simply reversed, the result is quite different:

Search /NULL/ =. 2 Dev:Std0Out > Found
This command redirects diagnostic output to the previous standard output (probably the active window), then redirects Output to file Found.

Redirecting input and output 77

Pseudo-filenames are especially useful in a command file when you want to do

something like sending standard output to the diagnostic output. Here are some
examples:

Echo "An error message." >> Dev:StdErr

Echo “HELP !" >> Dev:Console

Dev:Null is useful in command files when you want to throw away diagnostic output.
For example:

Eject 1 2 Dev:Nuli

This command ejects the disk in drive 1; if no disk is in drive 1, the command file
continues to run silently. (Note that you would also need to set {Exi} to O—see
“Variables” earlier in this chapter.)

Defining your own menu commands
The AddMenu and DeleteMenu commands are for adding and deleting menu items.
The AddMenu command takes three parameters: the menu name, the item name,
and the command text. For example, i

AddMenu Find 'Top of Window/U' 'Find »Ħ "{Active}"'

This command adds 2 “Top of Window” item to the Find menu, with the keyboard
equivalent Command-U. When you select the menu item, the corresponding
commands are executed. (The Top of Window item moves the insertion point to the
top of the active window.)

Invoking a user-defined menu item is the same as entering the Sonani text from a
window—variable substitution and command substitution are performed normally.
Note, however, that the text of the menu command is processed twice—once when
the AddMenu command itself is executed,.and again whenever the menu item is
executed. This means that you have to be especially careful in your use of quotes. The
mysteries of quoting are explained earlier in this chapter in “Quoting Special
Characters,” together with further AddMenu examples. You should also pay
particular attention to the section “How Commands Are Interpreted.” For further
information, and more examples, see the AddMenu command in Chapter 9.

Sample command files

The following examples use most of the Shell’s features to illustrate how you can
extend the MPW Shell with your own commands.

78 Chapter 3 : Using the Command Language

N

“AddMenuAsGroup”

z! m S 5 a P= A oO a = M A B 5 it] Fal kj E a a 8 F : 2 8 a,

AddMenuAsGroup - AddMenu, grouping user defined menu items:

AddMenuAsGroup [menuName [itemName [command 3]

AddMenuAsGroup duplicates the functionality of the AddMenu command, adding a disabled divider before the first user- defined menu items in the File, Edit, and Find menus.
FE 3E 46 $k Hk Jk te k

Unalias

Set Exit 0

Set CaseSensitive 0
, If ({#} == 3) AND ("{1}" =~ /File/ OR "{1)" =~ /Edit/ ð OR "{1}" =~ /Find/)

If `AddMenu "{1}"* mæ nn # If this is the first adđition in {1}
: AddMenu "{1}" "(7 nw y add the group divider

End

End

AddMenu {"Parameters"}

When adding menu items .to the predefined menus, it’s nice to add a disabled dotted line item to separate the new menu items from the original ones. The command file ' above automatically adds the separator before the first new item in the File, Edit, and Find menus, the only predefined menus that can be modified. by using AddMenu. If you put this script in a file named AddMenuAsGroup, the following alias will override the built-in AddMenu command:

Alias AddMenu AddMenuAsGroup

The following command file extends the C command by making it possible to compile a number of specified files:

CC - Compile a list of files with the C compiler

CC [options..] [file..]

Note that the options and the files may be intermixed, and that all options apply to all the files. The individual C commands are echoed to diagnostic output as they are executed.
AER OH te

Sample command files 79

Unalias

Set Exit 0

Set CaseSensitive 0

Set options ""

Set files ""

Set exitStatus 0

Loop

Break If (#} == 0

If "{1}" =~ /-[diosu}/ ` #options with a

parameter

Set options "{options} '{1}'"

Set options "{options} ‘'{2}'"

Shift 2

Else If "(1}" =~ /-=/ #other options
Set options "{options} '{1}'"

Shift 1 i

. Else

Set files " {files} '{1}'"

Shift 1

End

End

For. i in {files}
C {options} "{i}" |] Set exitStatus 1

End

Exit ({exitStatus}

80 Chapter 3 : Using the Command Language

Editing commands xx

Selections xx

Current selection x

Selection by line number x
Position x

Extending a selection x
Pattern x

Pattern matching (Using regular expressions) xx

Character expressions x
“Wildcard” operators x
Repeated Instances of regular expressions x
Tagging regular expressions with the ® operator x
Matching a pattern at the beginning or end of a line x
Inserting invisible characters x
Note on forward and backward searches x

Some useful examples xx

Transforming DumpObj output x
Finding a whole word x

This chapter describes the editing operations available as built-in commands,

including the use of regular expressions. These commands enable powerful find-

and-replace functions, and make it possible to automate editing operations by using

command files.

Menu commands are described in Chapter 2, “Basic Editing.” For a full description

of the use of the command language, see Chapter 3, “Using the Command

Language.”

pO
TEE

le eee

Editing Commands

The command language contains editing commands that duplicate the functions of

many of the menu commands and provide additional capabilities. The editing

commands are listed in Table 4-1. CThey’re explained in detail in Chapter 9,

"Command Reference.”)

Table 4-1
Editing commands
i A

Adjust [-c cound [-l spaces) selection (windows Adjust lines in a selection.

Align {-c cound selection [windoul Align text with first line of selection.

Clear {-c cound selection [windowl Delete selected text.

Copy {-c count) selection (window l Copy selected text to the Clipboard.

Cut [-c count selection [window Copy selected text to the Clipboard and

then delete the selection.

Find [-c cound selection (windoul Find and select text

Font fontname fontsize {window Change the font and/or size.

Paste [-c cound selection (window! Replace selection with the contents of the

Clipboard.

Replace {-c count selection replacement (windou4 Replace selection with replacement.

Tab number [window Set a window’s tab value to number spaces

Target name Make a window the target window.

If no window parameter is specified, editing commands act on the target window.

The target window is the second window from the top. Therefore, to edit the active

window, you'll need to switch to another window for entering your commands. (The

Target command makes a window the target ‘window; the Shell variables {Active} and

(Target always contain the full pathnames of the current active and target windows.)

82 Chapter 4: Advanced Editing

EN

oN:

so

Most editing commands take the following parameters:

-C count You can specify a repeat count with the -c option—count is the
number of imes the command should be executed. Count may
also be the infinity character, oo (Option-5), which specifies
that the operation should be repeated as many times as

- possible.

Selection Most editing commands act on a selection, either the current
selection in the target window or another selection that you
specify. An implicit Find is first done to select the specified
text, and then the text is modified. The selection syntax is
defined in the next section.

window The optional window parameter lets you specify the name of
the window to be affected by a command, without changing the
Position of the affected window.

A command modifies the selection only if there were no syntactic errors in the
selection, and all regular expressions were matched. Commands run silently unless
an error occurs.

SS
Selections
Selection is a parameter to editing commands, and tells the command what text to select. A selection may be any of the following:
B a line in a file (selected by line number)
a a position in a file

a a specific character pattern

m a selection that begins and ends with any of the above
As an example of the selection syntax, consider the definition of the Find command:
Find [-c cound selection [window]

Find takes a selection as an argument and selects the argument text (or sets the insertion point). An actual command might take the form

Find /shazam/

This command finds and selects the first instance of the string “shazam” that appears after the current selection. (The slashes are used to enclose a pattern, a special case of a selecuon, as explained below.) No count is specified, so the-command is
execuied once. No window name is specified, so the command Operates on the target
window,

Selections 83

Table 4-2 shows all of the selection operators. They're fully explained in the sections

following the table.

Tabie 4-2
Selection operators -
i

Current selection:

§

Line numbered selections:

n

In

in

Position (insertion point):

Aselection

selectionA

Selectionin

selectiongn

Current selection in the target window (§ is Option-6 on the

keyboard

Line number

Line number » lines after the end of the current selection

Line number n lines before the start of the current selection

G is Option-1)

Position before the first character of the file (+ is Option-8)

Position after the last character fo the file (æ is Option-5)

Position before the first character of selection (A is Option-J)-

Position after the last character of selection

Position n characters after the end of selection

Position characters before the beginning of selection

Pattern (characters to be matched):

/pattern/

\pattern\

Extended selection:

selection1: selection2

Grouping

(selection)

Pattern (regular expression)—search forward (see “Pattern

Matching,” below)

Pattern—search backward

Both selections and everything in between

Controis order of evaluation

A formal definition of selections can be found in Appendix B.

All of the operators group from left to right, and evaluation proceeds from left to

right. The selection operators are listed below in order of precedence:

84 Chapter 4: Advanced Editing

iS

Sc La piri

/ and \ Everything within slashes is taken as a regular expression, and
evaluated as explained below under “Pattern Matching.”

() Controls order of evaluation.
A Indicates position.
landi Indicates position (! = after; ; = before).
: Joins two selections. i

Some examples will illustrate why it’s important to pay attention to the precedence of
these operators:

A/begin/!1 means (A/begin/) !1
rather than A(/begin/!1)

That is, the insertion point is located after the “b" of “begin” rather than
after the “n”.

/begin/:/end/!1 means the selection /begin/: (/end/!1)
rather than the position (/begin/:/end/) !1

. That is, the character after “end” is included in the selection, as shown in Figure 4-1

é File Edit Find Format Windows

SSS HD:MPW:Worksheet EES
Tind Sbeqins: derd! d

outStr: Str255;

GIN
NumToString (num, outStr);
TextFace (11);
DrawString (CoutStr);
Text CIBold]>- :

PROCEDURE GetVolStuff: { sets information on the defa

Figure 4-1
A selection specification

Selections 85

Current selection (§)

The current selection character, § (Option-6), always indicates the current selection

in a window. If no window is specified, § indicates the current selection in the target
window. For example, consider the windows shown in Figure 4-2.

=== HD:MPW:Worksheet

Genere
D

Link Memory.a.o ~-o Memory -ot DFIL -oc DMOU ò
-da ~sn Main=Memory -rt DRUR= 12 ay

Figure 4-2
Selections In two windows

The command

Replace § ðn

would replace the current selection in the target window with a single return (newline)
character. (“dn” is a special code for inserting a return—see “Inserting Invisible

Characters” later in this chapter.)

“Note that the current selection is a dynamic quantity—it’s determined by the last

subexpression evaluated, and thus represents the current state of a selection as it's

being calculated. For example, consider the command

Find /if/:§'1:§!1

At various points in the evaluation of the search string */if/:§!1:§!1", the current

selection (§) has the following different values:

86 Chapter 4: Advanced Editing

cai

o>

before calculation the pre-existing selection in the target window
after “/if/” “if?
after “/if/:§11° all characters from “if” to (and including) the first

character after the ‘if
after “/if/:§!1:§!1" all characters from ‘if to (and including) the first

two characters after the ‘if

rr gt UU Selection by line number

If you give an- unquoted number as a selection, it’s taken to be 2 line number. This may be an absolute line number, or a number of lines relative to the current selection. For example, to select line 3 of a file, you’d use the command
Find 3

The exclamation mark and inverted exclamation mark (! and) specify a number of lines. after or before the current selection. The command

Find !3

selects a line that is 3 lines beyond the current selection. Note that the im notation specifies a line relative to the end of the current selection (that is, n lines past the line containing §A); jn specifies a line relative to the start of ‘the current selection (n lines before the line containing A§).

Position

A position is a special case of a selection. Position means the location of the insertion, point only. The A character (Option-J) is used to convey position relative to a selection. For example, consider the commands

Find 3

Find A3

Find 3A

The first Find command selects the entire third line in the target file, The Find A3 and Find 3A commands place the insertion point at the beginning and at the end of the third line.

You can also use the ! and į Operators to specify a position that’s a given. number of characters from a selection: selectionin Specifies a position n characters after selection, and selectionin specifies a position n characters before selection.
‘Notice that this leads to two different uses of the ! and į operators, as in the following example:

Find '414

Selections 87

The first “14” indicates a selection that’s 4 lines beyond the current selection; the

second “!4” indicates the position that’s 4 characters beyond the end of that

selection. i

You can specify other positions in a file with the following special notation:

e (Option-8) Position preceding the first character in file

æ (Option-5) Position following last character in file

eraa areenaa

Extending a selection

A colon is used to join two selections. For example:

Find /begin/:/end/

This command selects “begin”, “end”, and everything in between. (See Figure 4-1

above.) Compare this command with

Find / begin=end/

which looks for a begin-end pair on a single line.

Pattern

A pattern may be either a literal text pattern or a regular expression (defined in the

next section). You specify a pattem between the /.../ and \...\ delimiters. Forward

slashes indicate a search forward, and back slashes indicate a search backward. A

forward search begins at the end of the current selection and continues to the end of

the file. A backward search begins at the start of the current selection and continues

to the beginning of the file. For example, the command

Find /myString/

searches forward for the literal expression ‘mystring”. (Recall that to specify case-

sensitive pattern matching, you need to set the Shell variable (CaseSensitive}, or

select the “Case Sensitive” menu item.)

88 Chapter 4: Advanced Editing

** Note: To locate the insertion point at the beginning of the target window, for instance before executing a Find command, you can use the command
Find «

In fact, this command is so useful that you may want to add it as a menu command—see the example under the AddMenu command in Chapter 9.

Pattern matching (using regular expressions)

One or more files for occurrences of a Pattern), and in If and Evaluate expressions following the =~ and i~ Operators. Regular expressions are always used within the pattem delimiters /.../ or \...\.

A special set of metacharacters, called regular expression operators, are used in regular expressions (and in filename generation), The regular expression operators are listed in Table 4-3,

Table 4-3
Regular expression operators

c Any character matches itself (unless it’s one of the special
characters listed below)

dc Defeat special meaning of following character (c is taken literally) tava! Literalize enclosed characters a Literalize enclosed characters, except ð, {, and `
? Any single character (other than retum) ~ Any string of 0 or more characters, not containing a return (character...} Any character in the list (-character...) Any character not in the list (= is Option-L on the keyboard)
regularExpr Regular expression 0 or more times l regularExpr+ Regular expression 1 or more umes regularExpre«tm Regular expression 7 times (« is Option-\ ; » is Option-Shift-\) regularExpren,» Regular expression 7 or more times regularExpr«ny, n Regular expression n 1'0 Mp times
(regularExp Grouping

; (regularExpr)® n Tagged regular expression (where 0 < n< 9) regularExpr jregularExpr. regularExpr ; followed by regularExpr
* regularExpr Regular expression at beginning of line regularExpre Regular expression at end of line

Pattern matching (using regular expressions) 89

These characters are considered special in the following circumstances:

ð ; special everywhere except within single quotes C...)

?=* + [« €.) special anywhere except within [...],'...', and"..."

® special only after a right parenthesis,)

° special as first character of entire regular expression

oo special as last character of entire regular expression

/ N\ special if used to delimit a regular expression

Their precedence (from highest to lowest) is as follows:

C)
? = * + [] « ®
concatenation

« oo

A formal definition of regular expressions can be found in Appendix B. The rest of

this section describes the use of regular expressions for describing selections.

ri A A aa

Character expressions

In the simplest case, regular expressions consist of literal characters enclosed in

slashes. For example,

/what the ?/

Notice one complication, however—if the literal character happens to be one of the

regular expression operators (such as “?”), it will be specially interpreted rather than

taken as a literal character. If you want to specify a literal character that happens to

have a special meaning within the context of regular expressions, you'll have to

precede it with the escape character, 0, or enclose it in quotes. ð has the effect of

“literalizing” the character that follows it. For example, to find the literal expression

given above, you would use one of the following commands:

Find /what the @?/

Find /what the '?'/

Find /'twhat the ?'/

You could also use the ”..." form of quotes.

a o aa ramaan

“Wildcard” operators

In addition to literal characters, regular expressions can include the operators ?, =

(Option-X), and [|, which are used as follows:

? any character other than return

90 Chapter 4: Advanced Editing

oo

= any string not containing return, including the null

string (this is the same as ?.)

(characterLis# any character in the character list (as defined below)

[~ characterLisi any character not in the list

These operators are also used as wildcards in filename generation. (You can also use

the *, +, and «...» operators in filename generation—see “Filename Generation” in

Chapter 3.)

A character list is an expression consisting of one or more characters enclosed in

square brackets ([...}). It matches any character found in the list. The case-sensitivity

of characters in the list is governed by the {CaseSensitive} variable (which you can set

or unset by toggling the Case Sensitive menu item). A list may consist of individual

characters or a range of characters, specified with the minus sign (-). For instance,

the following two commands are equivalent:

Find /{ABCDEF]/

Find /[A-F}/

You can also mix the two notations:

Find /{0-9A-F$]/

% Note: This command specifies any of the characters 0 through 9, A through F,

and $. To specify the] or - characters, place them at the beginning of the list or

literalize them with the escape character, d.

The negation symbol, —.(Option-L), lets you specify any character not in the list. For

example,

Find /[7A-2]/

This example specifies all characters except the letters A through Z. (To specify the ~

character itself, place it anywhere in the list other than the beginning, or literalize it

by preceding it with the escape character, d.)

Repeated instances of regular expressions

The asterisk character C) matches zero or more occurrences of the immediately

preceding regular expression. The plus sign (+) matches one or more occurrences of

an expression. For example, the command

Find /{0-9)+/

will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times with the

«n» notation:

Pattern matching (using regular expressions) 9}

regularExpr« tm regular expression n times

regularExpren,» regular expression at least n times

regularExpr«ny,n»> regular expression at least ny times and at most 712 times

For example:

Replace -c œ /' '«4,»/ dt

This command finds any string of 4 or more spaces, and replaces it with a tab.
(The -c æ option specifies a repeat count of “infinity,” that is, it replaces all
occurrences of the selection to the end of the document.)

Tagging regular expressions with the ® operator

The ® (Option-R) operator tags a regular expression between parentheses. This
Operator is useful with the Replace command, for example, in reformatting tables of
data. Consider a table with two columns of numbers separated by spaces or tabs:

123 456

123 456

123 456

123 456
etc. i

The following Replace command switches the order of the two columns:

Replace -c /({0-9]+)@1[dt)]+({0-9]+)@2/ '®2 @1'

Translated into English, this expression means

[0-9] + Match one or more characters in the set “0” to “9”;

((0-9]+) @1 remember that selection (the expression enclosed in
i parentheses) as @1;

{]+ next, match at least one space or tab;

((0-9] +) @2 then match one or more characters in the set “0” to “9" and
remember it as 2;

'®2 ®@1' finally, replace the whole matched string with what was

remembered as ®2, a space, and what was remembered as @1.

Note: The quotes are stripped off, as explained under “Quoting
Special Characters” in Chapter 3. The ®@ operator itself can only
be disabled with the escape character, ð.

After this sequence is executed, the table would look like this:

92 Chapter 4: Advanced Editing

Matching a pattern at the beginning or end of a line

In the context of regular expressions, the + metacharacter (Option-8) means that the

subsequent expression must be matched at the beginning of a line. For example, the

regular expression

/*main/

will match a line that begins with “main” but not a line that begins with “space main”.

The beginning of.a line is either the first character after a return or the first character

of the file. ` l

Likewise, the œ metacharacter means that the previous expression must be matched

at the end of a line. The regular expression

/mainoe/ :

will match a line that ends with “main” but not a line that ends with "main space’.

The end of a line is either the last character of a line prior to the Return, or the end of

the file.

Notice that and œ have another meaning within selections. Within a pattern, they

indicate the beginning and end of a dine. Within a selection, they indicate the

beginnning and end of the fl.

eS

Inserting invisible characters

You can use the Shell escape character, ð, to insert the following special characters in

text:

ðn Return

AEs: Tab

of Form feed

* Note: The “Show Invisibles” menu item shows the invisible space, tab, and

return characters in a file.

For more information on the escape character, see “Quoting Special Characters” in

Chapter 3.

- Pattern matching (using regular expressions) 93

Note on forward and backward searches

Forward and backward searches aren't always completely symmetrical. For example,

consider the command :

Find /2?*/

This command finds zero or more occurrences of any character other than a Return.

The first time you execute this command, if the current selection is not at the end of a

line, some range of characters will be selected. However, in subsequent invocations,

the selection will hang at the end of the line—only an insertion point will be left at the

end of the line. This is because the * metacharacter matches zero occurrences and
the search starts with the character following the current selection—in this case, the
insertion point preceding a return. A backward search of the form

Find \?*\

will never hang at the beginning of a line. This is because a backward search begins
with the first character to the left of the current selection and so has the effect of
jumping over a return after encountering it.

Some useful examples

This section shows some examples of complex use of regular expressions.

Transforming DumpObj output

The DumpObj command, described in Chapter 9, formats the contents of an object
file. This example shows how to transform a DumpObj listing, such as the following,
back into valid assembly code.

000000: 4EBA Q6F8 "Nines! JSR *+506PA 7 €004282A

090004: 4EBA O4EA SNe we JSR *+$04EC ; 60042620

2900008: 3B7C 0014 FCC4 ';4....' MOVE.W #50014,$FCC4 (AS)

SOOOOE: 2660 0010 ‘am..' MOVEA.L $0010{A5),A3

coociz: 2653 "es! MOVEA.L (A3),A3

090014: OCSB 0000 Bn Been CMPI.W #50000, (A3)+

900018: 6600 0008 lE BNE *+$000A + 60042152

00001C: J3AI1B Saat MOVE.W (A3) +, D5

SCOO1E: 6600 9010 ie ere BNE *+$0012 ; 60042160

ek.

You could position the insertion point at the beginning of the code, and use the
following Replace command:

94 - Chapter 4: Advanced Editing

Replace -c œ /2?«4l»/ “dtdt™ + delete everything up to the instruction

However, the previous command works only because DumpObj happens to place the

instruction at column 42. The following example, by defining some Shell variables,

works regardless of the exact column layout:

Set hex "{0-9A-F]«4,6»" # 4 to 6 characters in the set 0-9 and A-F

Set space "{ dt]+" # l or more spaces or tabs

Set chars "dd'?+d0'" # 1 or more of any character between ð

single quotes

Replace -c œ / {hex}: ({space} {hex})«l, 3» {space} {chars} {space}/ "otot"

eg LS

Finding a whole word

The following example illustrates how you could find an exact match for a C identifier

that you had previously defined in the variable {ident.

Set tokensep "(ma-zA-2_0-9]" #.a token separator is any character ð

not in the set a-z, A-Z, , or 0-9

Set CaseSensitive 1 # set to "true"—the case of each

character must match

The following Find command is not quite right, because it selects not only the

matched identifier, but also the token separator on each side of the identifier:

Find /{tokensep} {ident} {tokensep}/

The following Find command selects only the matched identifier. It accomplishes

this by. adding 1 to the starting position of the selection (Aselectioni1), and using that

as the starting point for a new selection that extends to the beginning of the next token

separator: l

Find A/{tokensep} {ident} {tokensep}/!1:A/ {rokensep}/

Some useful examples 95

Chapter 5

Editing Resources With ResEdit

About ResEdit xx

Uses x

Extensibility x

Using ResEdit xx

Working with files x
Working within a file x
Working within a resource type x >
Editing individual resources x

'CURS' resources x

‘DITL' resources x

'FONT' resources x

‘ICN#' resources x

Creating a resource template xx

The chapter describes ResEdit, 2 stand-alone application for editing resources.

> Note: As in Inside Macintosh, resource types are shown within single quotes;

for example, 'STR' (that is, STRspace). The quotes are not part of the name.

——————————————————
SS

About ResEdit

ResEdit is an interactive, graphically based application for manipulating the various

resources in a Macintosh application. It lets you create and edit all standard resource

types except 'CODE’, and copy and paste all resource types (including ‘CODE.

ResEdit actually includes a.number of different resource editors: there is a general

resource editor, for editing any resource in hex and ASCII format, and there are

severat individual resource editors for specific types of resources. You can also

create your own resource editors to use with ResEdit.

aan mme are ea a

Uses

ResEdit is especially useful for creating and changing graphic resources such as

dialogs and icons. For example, you can use ResEdit to put together a quick

prototype of a user interface and try out different formats and presentations of

resources, You can also use ResEdit for translating resources into a foreign language

without having to recompile the program. You can use ResEdit to modify a

program’s resources at any stage in the process of program development.

Once you have created or modified a resource with ResEdit, you can use the Resource

Decompiler, DeRez, to convert the resource to a textual representation that can be

processed by the Resource Compiler, Rez. You can then add comments to this text

file or otherwise modify it with the Shell editor. (Rez and DeRez are fully described in

the next chapter.) f

Extensibility

A key feature of ResEdit is its extensibility. Because it can’t anticipate the format of all

the different types of resources that you might use, ResEdit has been designed so that

you can teach it to recognize and parse new resource types.

About ResEdit 97

There are two ways that you can extend ResEdit to handle new types:

You can create templates for your own resource types. ResEdit lets you edit most
resource types by filling in the fields of a dialog box—this is the way you edit
'BNDL' and 'FREF' resources, for example. The layout of these dialog boxes is
determined from a template in ResEdit’s resource file, and you can add templates
to edit new resource types. Resource templates are described later in this chapter.

You can also program your own special-purpose resource picker and/or editor
and then add it to ResEdit. The resource picker is the code that displays all the
resources of one type in the resource type window. The editor is the code that
displays and allows you to edit a particular resource. These pieces of code are
separate from the main-code of ResEdit. A set of Pascal routines, called ResEd, is
available for this purpose—see MPW Reference for information.

nner eae A

Using ResEdit
From the MPW Shell, you can start ResEdit by entering the command

ResEdit

(This assumes, of course, that ResEdit is in the Applications folder, or elsewhere in
the search path defined by the {Commands} variable.) From the Finder, you can just
select and open the ResEdit icon. ResEdit displays a window that lists the files and
folders for each disk volume currently mounted (Figure 5-1).

98 Chapter 5: Editing Resources With ResEdit

` é File Edit

ID Screen 1

10 Screen 2

ID Sustem Folder

Figure 5-1
A disk volume window

ig RL

Working with files

To list the resource types in a file, select and open the filename from the list. (You

can select a name by clicking on it or by typing one or more characters of the name.)

When a directory window is the active window, the File menu commands act as

follows:

New Creates a new file.

Open Opens the selected file or folder (this is the same as double-

clicking on the name).

Close Closes the volume window (this is the same as clicking the close

box). If it’s a 3.5-inch disk, the disk is ejected.

Get Info Displays file information and allows you to change it. For

example:

Using ResEdit 99

SSS

. Creator

[JLocked ([JInwisible (Bundle C] System
C] On Desk []Bozo [Busy CO Changed
C Cached [] Shared K Inited
C Always switch launch

0 File Busy C] Fite Lock [File Protect

Created {6/25/86 5:00:00 PM

Modified |7/16/86 8:46:51 PM

Resource fork size = 15637? bytes
Nada Cmmle nimm = 1 hban

Transfer Allows you to transfer to an application other than the
application that launched ResEdit. (This is an alternative to the
Quit command.)

Quit Quits from ResEdit and returns to the MPW Shell (or Finder).
Oi

Warning

You can edit any file shown. in the window, Including the System file and
ResEdit itself. However, it’s dangerous to edit a file that’s currently in use. Edit a
copy of the file instead. (For example, edit the System file on a non-boot
volume.)
Sanna nner aaao
ResEdit will recognize a new disk when it’s inserted, and also handles multiple drives.
Note that you can also use ResEdit to copy or delete files:
u To delete a file, select the file and choose Clear from the Edit menu.

m To copy a resource file, you must select all of its resources and copy them. Then
paste them into a new file. (File attributes are not automatically copied by this
operauon—you must set them via the Get Info command.) ResEdit cannot copy a
data fork.

100 Chapter 5: Editing Resources With ResEdit

nn

Working within a file

When you open a file, a window displays a list of all the resource types in that file

(Figure 5-2). While this window is the active window, you can create new resources,

copy or delete existing resources, and paste resources from other files.

> Note: The resources are displayed by a resource picker. The general resource

picker displays the resources by type, name, and ID number; there are also

special resource pickers for some resource types (for example, the 'ICON'

resource picker displays the icons graphically).

é File Edit

f MPW Shell
Olg
D hg
D io
Dip
D ia
Aja
Alg
Dig

ia

Figure 5-2
A file window

When a file window is the active window, the File menu commands have the following

effects:

New Creates a new resource in the open file.

Open Opens a window displaying all resources of the resource type

selected. (Select the resource type by clicking on it or by typing

its first character.)

Using ResEdit 103

Note: If you hold down the Option key while opening a resource
type, the resource window will open with the general resource
picker.

Open General Opens the general resource picker.

Close Closes the file window and asks if you want to save the changes
you have made. .

Note: If you've made changes, you should not reboot before
closing.

Revert Changes the resource file back to the version that was last saved
to disk.

Quit Quits from ResEdit.

When a file window is the active window, the Edit menu commands have the
following effects:

Cut Removes all resources of the resource types selected, placing
them in the ResEdit scrap.

Copy Copies all resources of the resource types selected into the
ResEdit scrap. __

Paste Copies the resources from the ResEdit scrap into the file
window’s resource type list.

Clear Removes all resources of the resource type selected, without
placing them in the ResEdit scrap.

Duplicate Creates duplicates of all resources of the resource types selected,
and assigns a unique resource ID number to each new. resource.

Working within a resource type

Opening a resource type produces a window that lists each resource of that type in the
file Figure 5-3). This list will take different forms, depending on the particular
resource picker; if you hold down the Option key during the open, the general
resource picker is invoked.

102 Chapter $: Editing Resources With ResEdit

é File Edit

|___MacProgram D
za ICN#'s from MacProgram :

a
o
D
D
ja
1a
iD Si

lo

Figure 5-3
A resourcetype window

When a resource type window is the active window, the File menu commands have

the following effects:

New Creates a new resource and opens its editor.

Open Opens the appropriate editor for the resource you selected.

Open as... Allows you to open an editor template of a different type.

Open General Opens the general (hex) resource editor.

Close Closes the resource type window.

Revert Changes the file back to what it was before opening the resource
type window.

Using ResEdit 103

Get Info Displays resource information and allows you to change it. For

example:

== info for ICN 129 from MPU Shell ===

Type: ICN# ize: 256

Name:

ID:

Owner 1D:

Sub 10:

Attributes:

O System Heaps C Locked C Preload
Ci Purgeable [] Protected

When a resource type window is the active window, the Edit menu commands have

the foilowing effects:

Undo Undoes the most recent editing command. Undo may or may

not be selectable, depending on the specific editor in use.

Cut Removes the resources that are selected, placing them in the
ResEdit scrap.

Copy Copies all the resources that are selected into the ResEdit scrap.

Paste Copies the resources from the ResEdit scrap into the resource
type window.

Clear Removes the resources that are selected, without placing them in

the ResEdit scrap.

Duplicate Creates a duplicate of the selected resources and assigns a

unique resource ID number to each new resource.

104 Chapter 5: Editing Resources With ResEdit

Editing individual resources

To open an editor for a particular resource, either double-click on the resource or

select it and choose Open from the File menu. One or more auxiliary menus may

appear, depending on the type of resource you're editing. Some editors, such as the

'DITL' editor, allow you to open additional editors for the elements within the

resource. All the editors use File and Edit menus similar to those described above,

but operate on individual resources or individual elements of a resource.

If you hold down the Option key while opening a resource, the general data editor

is invoked. This editor allows you to edit the resource as hexadecimal or ASCII data.

If you hold down the Shift and the Option keys while opening, ResEdit shows you a list

of all editors and templates.

A

Caution

Individual editors may not be appropriate for all resource types—inappropiate

editors may cause system errors to occur.

The menus for some of the editors are discussed below. The use of the editors not

discussed here should be apparent when you run them.

% Note: The general data editor will not edit resources larger than 16K bytes;

however, you can move larger resources with the Cut, Copy, Paste, and Clear

commands as described above.

‘CURS' (Cursor) resources

For 'CURS' resources, the editor displays three images of the cursor (Figure 5-4). You

can manipulate all three images with the mouse.

Using ResEdit 105

é File Edit Cursor

) ursors from System |

Cursor ID = 4 from System ==

angsun BES
EN ELAZEZ Beane z

a BRSERAGE | Basan s
a pe BB ETTI I s
E RE NRE a8 ESTRETA s

SRERRREGEEE Bae ee A a
RESSREEERS gag ATE RES] B
SRNSILERA BER ESUSANHÄ 2
ENTRES CEF SETEASEN 8
SEREES gee EELCO @

| Zonan BA SENTEN a
n EETL EE SaeeaEe s
u Sena a PEELE I £
—— Rs aS ed TO a re ara D a

Figure 5-4 i
Editing 'CURS' resources

The left image shows how the cursor will appear. The middle image is the mask for the
cursor, which affects how the cursor appears on various backgrounds. The right
image shows a gray picture of the cursor with a single point in black—this point is the
cursor’s hot spot.

The Cursor menu contains the following commands:

Try Cursor Lets you try out the cursor by having it become the cursor in use.

(Restore Arrow restores the standard arrow cursor.)

Data ~>Mask Copies the cursor image to the mask editing area.

‘DITL' (Dialog Item List) resources

For ‘DITL' resources, the editor displays an image of the item list as your program

would display it in a dialog or alert box. When you select an item, a size box appears

in the lower-right corner of its enclosing rectangle so that you can change the size of

the rectangle. You can move an item by dragging it with the mouse.

IF you open an item within the dialog box, the editor associated with the item is
invoked, for an ICON’, for example, the icon editor is invoked. If you hold down the

Option key while opening, the general data editor is invoked.

106 Chapter 5: Editing Resources With ResEdit

The DITL menu contains the following commands:

Bring to Front Allows you to change the order of items in the item list. Bring to

i Front causes the selected item to become the last (highest

numbered) item in the list. The actual number of the item is
shown by the 'DITM' editor. ;

Send to Back Like Bring to Front, except that it makes the selected item the

first item in the list-~—that is, item number 1.

Grid Aligns the item on an invisible 8-pixel by 8-pixel grid. If you

change the item location while Grid is on, the location will be

adjusted such that the upper-left corner lies on the. nearest grid
point above and to the left of the location you gave it. If you
change the size, it will be made a multiple of 8 pixels in both
dimensions.

Use RSRC Rect Restores the enclosing rectangle to the rectangle size stored in
the underlying resource. Note that this works on 'ICON’, 'PICT,

and 'CNTU' items only; the other items have no underlying
resources. ;

Use full window Adjusts the window size so that all items in the item list are visible
in the window.

‘FONT’ resources

For 'FONT resources, the editor window is divided into three panels: a sample text
panel, a character selection panel, and a character editing panel. These are shown in

Figure 5-5.

Using ResEdit 107

tants trom system

Chicago!2

The quick

brown fox

jumps over

the lazy dog.

Figure 5-5
FONT editor window

The sample text panel, at the upper right, displays a sample of text in the font
being edited. CYou can change this text by clicking in the text panel and using normal
Macintosh editing techniques.)

The character selection panel is below the text panel. You can select a character to
edit by. typing it (using the Shift and Option. keys if necessary), or by clicking on it in

the row of three characters shown. (Click on the right character in the row to move
upward through the ASCI range; click on the left character to move downward.) The
character you select is boxed in the center of the row with its ASCH value shown below
it (in decimal).

The character editing panel on the left side of the window shows an enlargement of
the selected character. You edit it, like FatBits in MacPaint, by clicking bits on and

off, The black triangles at the bottom of the character editing panel set the left and

right bounds (that is, the character width). The three triangles at the left of the panel
control the ascent, baseline, and descent.

Caution

Changing the ascent or descent of a character changes the ascent or descent
for the entire font.

108 Chapter 5: Editing Resources With ResEdit

Any changes you make in the character editing panel are reflected in the text panel

and the character selection panel. Remember that you cannot save the changes until

you close the file.

You can also change the name of a font. The font name is stored asthe name of the

resource of that font family with size 0. This resource does nöt Jow up in the normal

display of all fonts in a file. To display it, hold down the Option key while you open

the FONT type from the file window. You will see a. generic list of fonts. Select the font

with the name you wish to change and choose Get info.

'ICN#' (icon List) resources

For ICN#' resources, the editor displays two panels in the window (Figure 5-6). The

upper panel is used to edit the icon. It contains an enlargement of the icon on the left

and an enlargement of the icon’s mask on the right. The lower panel shows, from left

to right, how the icon will look unselected, selected, and open on both a white and a

gray background. It also shows how the icon will appear in the Finder’s small icon

view.

é File Edit Icn#

a | ICN#'s from Finder

p
AD

D
b

D

D
m " suunes "e,

Ba "a a "s, a
E ass E a8

D Ti sse ueusuens BH

a a 258

"a Tam en
. panan sean

Figure 5-6
ICN# Window

Using ResEdit 109

To install a new icon for your application when you already have an old one in the
Finder's desktop file, follow these steps:

1. Open the file called DeskTop.

2. Open type 'BNDL' and find the bundle that belongs to your application. (This is
the one that has your owner name in it) Look through the bundle and mark down

the type and resource ID of all resources bundled together by the bundle (that is,
the 'ICN#'s. and 'FREF's).

3. Go back to the DeskTop window and remove these resources along with your
‘BNDL’ and signature resource (the resource whose type is your application's
Signature).

4. Now close the DeskTop window, save changes, and quit ResEdit. Your new icon

will be installed if you have the proper 'BNDL', 'FREF, and 'ICN#! resource
numberings.

Note: To see how 'BNDL', 'FREF', and 'ICN#! resources are interrelated, use

ResEdit to look at those resources in an existing application such as the MPW
Shell.

Alternatively, you can rebuild the DeskTop file by holding down the Option and
Command keys when entering the Finder: (This method is faster and easier, but you
will lose your Finder Get Info comments; you will also lose folder names on a non-
HFS volume.) :

Creating a resource template

You can customize ResEdit by creating new templates for-your own resource types.
The generic way of editing a resource is to fill in the fields of a dialog box—for
example, this is the way you edit 'FREF', 'BNDL', and 'STR#' resources. The layout of
these dialog boxes is set by a template in ResEdit’s resource file. The template
specifies the format of the resource and also specifies what labels should be put
beside the edirText items in the dialog box that’s used for editing the resource. You
can find these templates by opening the ResEdit file and then opening the type
window for ‘TMPL' resources. For example, if you open the template for 'WIND'
resources (this is the 'TMPL' with name “WIND”, you'll see the template shown in
Figure 5-7. ;

110 Chapter §: Editing Resources With ResEdit

r

é File Edit

ERE from ResEdit L

Figure 5-7
Window template data

The window template, then, consists of the following:

1. A RECT (4 words) specifying the boundary of the window.

2. A word that is the procID for the window (DWRD tells ResEdit to display the word

in decimal as opposed to hex).

3. A Boolean indicating whether or not the window is visible (BOOL is 2 bytes in the

resource but is displayed as a radio button in the dialog window used for editing).

4. Another Boolean indicating whether or not the window has a close box.

5. A long word that is the reference value (refCon) for the window (DLNG indicates

that it should be displayed in the editor as a decimal number).

6. A Pascal string (PSTR), the title of the window.

You can look through the other templates and compare them with the structure of

those resources to get a feel for how you might define your own resource template.

These templates are equivalent to the resource type declarations contained in the

(Rincludes} directory—refer also to the DeRez command in Chapter 9.)

These are the types you have to choose from for your editable data fields:

DBYT, DWRD, DLNG decimal byte, word, long word

Creating a resource template Wi

HBYT, HWRD, HLNG hex byte, word, long word

HEXD hex dump of remaining bytes in resource

PSTR a Pascal string Gength byte followed by the characters)

LSTR long string (length long followed by the characters)

WSTR same as LSTR, but a word rather than a long word

ESTR, OSTR Pascal string padded to even or odd length (needed for

DITL resources)

CSTR a C string

ECST, OCST even-padded C string, or odd-padded C string (padded
i with nulls) ~

BOOL Boolean

BBIT binary bit

TNAM type name (4 characters, like OSType and ResType)

CHAR a single character

RECT an eight-byte rectangle

Hnnn 3-digit hex number (where nnn < $900); displays nnn

bytes in hex format.

ResEdit will do the appropriate type checking for you when you put the editing dialog

window away.

The template mechanism is flexible enough to describe a repeating sequence of

items within a resource, as in 'STR#', 'DITL', and 'MENU' resources. You can also

have repeating sequences within repeating sequences, as in 'BNDL' resources. To
terminate a repeating sequence, put the appropriate code in the template as follows:
LSTZ

LSTE List Zero-List End. Terminated by a 0 byte (as in 'MENU's).

ZCNT
LSTC

LSTE Zero Count/List Count-List End. Terminated by a zero-based count

that starts the sequence (as in 'DITL' resources).

OCNT
LSTC

LSTE One Count/List Count—Lst End. Terminated by a one-based count

that starts the sequence (as in 'STR#' resources).

112 Chapter 5: Editing Resources With ResEdit

LSTB

LSTE Ends at the end of the resource (no example exists in the given

templates).

The “list-begin” code begins the repeating sequence of items, and the LSTE code is

the end. Labels for these codes are usually set to the string “*****". Both of these

codes are required.

To create your own template, follow these steps:

1.

2. Open the 'TMPL' type window.

3.

4

5

6.

Open the ResEdit file window.

Choose New from the File menu.

. Select the list separator (""***). ;

_ Choose New from the File menu. You may now begin entering the Jabel type pairs

that define the template. Before closing the template editing window, choose Get

Info from the File menu and set the name of the template to the four-character

name of your resource type.

Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you'll get the dialog

box in the format you have specified.

gg IS

Warning

` Changing resource templates (and hence resource type descriptions) can

cause system crashes if you open older versions of a resource with a new

template.
pt

o

Creating a resource template 113

fr

Chapter 6

Resource Compiler and

Decompiler

About the Resource Compiler and Decompiler xx

Resource Decompiler x

Standard type declaration files x

Using Rez and DeRez x

Structure of a resource description file xx

Sample resource description file x l

Resource Description Statements xx

Syntax notation x

Special terms x

Include — include resources fom another file x

Syntax x

Resource attributes. x

Read — read data as a resource X

Syntax x

Description x

Data — specify raw data x

Syntax x

Description x

Type — declare resource type x

Syntax x

Description x

Data-type specifications x
Numeric types x

Boolean type x

Character type x

String type x
Point and rectangle types x

Fill and align types x
Fill specification x

Align specification x

Array type x
Switch type x

Sample type statement x

An aside: symbol definitions x

Resource — specify resource data x

Syntax x
Description x
Data statements x

Switch data x
Array data x ;

Sample resource definition x

Symbolic names x

Preprocessor directives xx

Variable definitions x

Include directives x

If-Then-Else processing x

Resource description syntax xx

Numbers and literals x

Expressions X

Variables x

Strings x
Escape characters x

Resource Compiler and Decompiier

In the Macintosh Programmer's Workshop, you can build a resource graphically with
ResEdit, or in text form with the Resource Compiler. This chapter explains the use of

the Resource Compiler (Rez) and Resource Decompiler (DeRez). The command line

syntax for Rez and DeRez is explained in Chapter 9. General information on resource

files is given in the “Resource Manager” chapter of Inside Macintosh.

About the Resource Compiler and Decompiler
The Resource Compiler, Rez, compiles a text file Cor files) called a resource
description file, and produces a resource file as output. The Resource Decompiler,
DeRez, decompiles an existing resource, producing a new resource description file
that can be understood by Rez. Figure 6-1 illustrates the complementary relationship
between Rez and DeRez.

Resource Compiler
(Rez) resource

file

resource

description
file

(TEXT)

Resource Decompiler
(DeRez)

Figure 6-1
Rez and DeRez

The Resource Compiler can combine resources or resource descriptions from a

number of files into a single resource file. The Resource Compiler also supports
preprocessor directives that allow you to substitute macros, include other files, and

use. if-then-else constructs. (See “Preprocessor Directives” later in this chapter.)

116 Chapter 6: Resource Compiler and Decompiler

we hee a a

Resource Decompiler

The DeRez command creates a textual representation of a resource file based on

resource type declarations identical to those used by Rez. Cif you don’t specify any

type declarations, the output of DeRez is in the form of raw data statements.) The

output of DeRez is a resource description file that may be used as input to Rez. This

` file can be edited in the MPW Shell, allowing you to add comments, translate

resource data to a foreign language, or specify conditional resource compilation

using the if-then-else structures of the preprocessor. You can also compare resources

by using the MPW Compare command to compare resource description files.

Note: MPW Pascal also includes a sample tool, ResEqual, which directly

compares resource files.

cg a en ee

Standard type deciaration files

Three text files, Types.r, SysTypes.r, and MPWTypes.r, contain resource

declarations for standard resource types. These files are located in the {RIncludes}

directory, which is automatically searched by Rez and DeRez (that is, you can specify

a file in {RInchides} by its simple filename). These files contain definitions for the

following types:

Types.r Type declarations for the most common Macintosh

resource types (‘ALRT, 'DITL', 'MENU', and so on)

SysTypes.r Type declarations for 'DRVR', ‘FOND, 'FONT''FWID', 'INTL',

and 'NFMT'

MPWTypes.r Type declarations for the MPW driver type 'DRVW'

a

Using Rez and DeRez

Rez and DeRez are primarily used to create and modify resource files, Figure 6-2

illustrates the process of creating a resource file.

About the Resource Complier and Decompiler 117

Shel! editor or DeRez

Resource other
descriptian resource
(r) files files
TEXT

Resource Compiler

(Rez)

IN
Resource Editor Resource

(ResEdit) file

Figure 6-2
Creating a resource file

Rez can also form an integral part of the process of building a program. For instance,
when putting together a desk accessory or driver, you’d use Rez to combine the
Linker’s output with other resources to create an executable program file. (See
Chapter 7 for details.)

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. Note
that the Resource Compiler has no built-in resource types—you need to define your
own types, or include the appropriate “.r” files.

118 Chapter 6: Resource Compiler and Decomplier

AN

4 resource description file may contain of any number of statements, where a

statement is any of the folowing:

include Include resources from another file.

read Read data fork of a file and include it as a resource.

data Specify raw data.

type Type declaration—declare resource type descriptions for

subsequent resource statements.

resource Data specification—specify data fora resource type declared in

a previous type statement.

Each of these statements is described in the sections that follow.

A type declaration provides the pattern for any associated resource data

specifications by indicating data types, alignment, size and placement of strings,

and so on. You can intersperse type declarations and data in the resource

description file as long as the declaration for a given resource precedes any

resource statements that refer to it. An error is returned if data (that is, a

resource statement is given for a type that has not been previously defined.

Whether a type was declared in a resource description file or in an include file, you

can redeclare it by providing a new declaration later in a resource description file.

A resource description file can also include comments and preprocessor directives:

Comments can be included anywhere where white space is allowed in a resource

description file, within the comment delimiters /* and °/.

a Preprocessor directives substitute macro definitions and include files and

provide if-then-else processing before other Rez processing takes place. The

syntax of the preprocessor is very similar to the C-language preprocessor.

na MMM

Sample resource description file

An easy way to learn about the resource description format is to decompile some

existing resources. For example, the following command decompiles only the

WWIND' resources in the Sample application, according to the the type declaration in

{Rincludes}Types.r.

DeRez Sample -only WIND Types.r > DeRez.Out

After executing this command, DeRez.Out would contain the following:

Structure of a resource description file 119

resource ‘WIND' (128, “Sample Window") {

(64, 60, 314, 460},

documentProc,

visible,

noGoAway,

0x0,

"Sample Window”.

};

Note that this statement is identical to the resource description in the file Sample.r,
which was originally used to build the resource. This resource data corresponds to
the following type declaration, contained in Types.r:

type 'WIND' {

rect; j /* boundsRect */
integer documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc=#8, rDocProc=16;
byte invisible, visible; — /* visible*/
fill byte;
byte noGoAway, goAway; _/* goAway */
fill byte;

unsigned hex longint; /* xeftCon */

/ pstring Untitled = "Untitled"; / title
};

type and resource statements are explained in detail in the following reference
section.

Resource description statements
This section describes the syntax and use of the five types of resource description
statements: include, read, data, type, and resource.

Syntax notation

The syntax notation in this chapter follows the conventions given in the Preface.
Additionally, the following conventions are used:

= Words that are part of the resource description language are shown in courier to
distinguish them from other text. The Resource Compiler is not sensitive to the
case of these words.

120 Chapter 6: Resource Compiler and Decompller

foe

a Punctuation characters such as commas (,), semicolons (;), and quotation

wcarks C and ") are to be written as shown. If one of the syntax notation characters

(for example, [or]) must be written as a literal, it is shown enclosed by curly

quotes ('...); for example,

bitstring ‘[’ length‘]’

In this case, the brackets would be typed literally—they do not mean that the

enclosed element is optional.

m Spaces between syntax elements, constants, and punctuation are optional—they-

are shown for readability only.

Tokens in resource description statements may be separated by spaces, tabs, returns,

or comments.

Special terms

The following terms represent a minimal subset of the nonterminal symbols used to

describe the syntax of commands in the resource description language:

Term Definition

resource-type long-expression

resource-name
resource-iD word-expression

ID-range ID{: ID}

“+ Note: Expression is defined later in this chapter under “Expressions.”

A full syntax definition can be found at the end of this chapter, and in Appendix D.

Include — include resources from another file

The include statement lets you read resources from an existing file and include all

or some of them.

Syntax

Include statements can have the following forms:

a include file [resource-type ['(’ resource-name | ID‘)'11;

Read the resource of type resource-type with the specified resource name or

resource ID in file. If the resource name or ID is omitted, read all resources of the

type resource-type in file, If resource-type is omitted, read all the resources in

file.

gm include fle not resource-type;

Resource Description Statements 12)

Read all resources not of the type resource-iype in file.

m include file resource-typel as resource-type2 ;

Read all resources of type resource-typel and include them as resources of
resource-type2.

a include file resource-typel ‘(’ resource-name | ID’
as resource-type2 ‘(’ ID [, resource-name) [, attributes...}‘)’ ;

Read the resource of type resource-iypel with the specified name or ID in file,
and include it as a resource of resource-type2 with the specified ID. You can
optionally specify a resource. name and resource attributes. (Resource attributes
are defined below.)

Some examples follow:

include

include

include

“otherfile"; /* include all resources from the file */

"otherfile”" 'CODE'; /* read only the CODE resources */

“otherfile™ 'CODE' (128); /* read only CODE resource 128 */

Resource attributes

You can specify attributes as a numeric expression (see the “Resource Manager”
chapter of Inside Macintosh), or you can set them individually by specifying one of
the keywords from any of the following pairs:

Default Alternative Meaning

appheap sysheap Specifies whether the resource is to be loaded
into the application heap or the system heap.

nonpurgeable purgeable Purgeable resources can be automatically
purged by the Memory Manager.

unlocked locked Locked resources cannot be moved by the
Memory Manager.

unprotected protected Protected resources cannot be modified by
the Resource Manager.

nonpreload preload Preloaded resources are placed in the heap as
soon as the Resource Manager opens the
resource file,

unchanged changed Tells the Resource Manager whether a
resource has been changed. Rez does not
allow you to set this bit, but DeRez will display
it if it is set.

122 Chapter 6: Resource Compiler and Decompller

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager

and cannot be set by Rez, but are displayed by DeRez.

You can list more than one attribute by separating the keywords with a comma (,).

nf Se Fe ee ee

Read — read data as a resource

The read statement lets you read a file's data fork as a resource.

Syntax

read resource-type ‘(’ IDI, resource-name } {, attributes ‘)' file;

Description

Reads the data fork from file and writes it as a resource with the type resource-type

and the resource ID ID, with the optional resource name resource-name and

optional resource attributes (as defined in the preceding section). For example,

read ‘STR ' (-789, "Test String", SysHeap, PreLoad) "Tests";

a

Data — specify raw data

Data statements let you specify raw data as a sequence of bits, without any

formatting.

Syntax

Gata resource-type ‘C IDI, resource-name] [, attributes... 1° ‘(

data-string
Gi;

Description

Reads the data found in data-string and writes it as a resource with the type resource-

type and the ID ID. You can optionally specify a resource name, resource attributes,

or both.

Resource Description Statements 123

For example,

data 'PICT' (128) {

$"4F35FF8790000000"
S"FF234F35FF790000"

};

% Note: When DeRez generates a resource description, it uses the data statement

to represent any resource type that doesn’t have a corresponding type

declaration or cannot be disassembled for some other reason.

Type — declare resource type

A type declaration provides a template that defines the structure of the resource data
for a single resource type or for individual resources. If more than one type
declaration is given for a resource type, the last one read before the data definition is
the one that’s used—-this lets you override declarations from include files or previous

resource description files.

Syntax

type resource-type ['C ID-range')'] '(
type-spectfication...

© } d :

Description

Causes any subsequent resource statement for the type resource-type to use the
declaration { type-specification...}. The optional ID-range specification causes the .

declaration to apply only to a given resource ID or range of IDs.

124 Chapter 6: Resource Compller and Decompiler

z N

a

Type-specification is one of the following:

bitstring[#]

byte

integer

Llongint

bociean data-types; Data-type statements

declare

char a field of the given data type. They can

string also associate symbolic names or

pstzring constant values with the datatype.

estring

point

“rect

fill Zero fill

align l Zero fill to nibble, byte, word, or long word boundary

switch Control construct (case statement) .

array Array data specification—zero or more instances of

data-types

These types can be used singly or together in a type statement. Each of these

specifiers is described in the following sections.

© Note: Several of these types require additional fields—the exact syntax is given

in the following sections.

You can also declare a resource type that uses another resource’s type declaration,

by using the following variant of the type statement:

type resource-typel |‘ (C ID-range y'} as resource-type2 i

Data-type specifications

Data-type specifications can take three forms, as shown in the following example:

type 'XAMP' { /* declare a resource of type 'XAMP' */

byte;

byte off=0,. on=1;

byte = 2;

hy

a The first byte statement declares a byte field; the actual data is supplied in a

subsequent resource statement,

Resource Description Statements 125

a The- second byte statement is identical to the first, except that the two symbolic

names “off and “on” are associated with the values 0 and 1. These symbolic

names could by used in the resource data.

a The third byte statement declares a byte field whose value is always 2. In this case,

no corresponding statement would appear in the resource data.

“+ Note: Numeric expressions and strings can appear in type statements, they are

defined later in this chapter under "Expressions.”

Numeric types. The numeric types (bitstring, byte, integer, longint) are

fully specified as follows:

[unsigned] { radix] numeric-ype {| =expr | symbol-definition... 1:

w The unsigned prefix signals DeRez that the number should be displayed without a
sign—that the high-order bit may be used for data and the value of the integer
cannot be negative. The unsigned prefix is ignored by Rez but is needed by
DeRez to correctly represent a decompiled number. Rez uses a sign if it is specified
in the data. Precede a signed negative constant with a minus sign (~); $FFFFFF85
and —$7B are equivalent in value.

m Radixis one of the following string constants:

nex decimal octal binary literal

You can supply numeric data as decimal, octal, hexadecimal, or literal data.

m Numeric-type is one of the following:

bitstring' [length']’ Declare a bitstring of length bits (maximum 32).

byte Declare a byte (8-bit) field. This is the same as

bitstring[8].

integer Integer (16-bit) field. This is the same as

bitstring(16].

longint Long integer (32-bit) field. This is the same as
bitstring [32].

Rez uses integer arithmetic and stores numeric values as integer numbers. Rez

translates booleans, bytes, integers, and longints to bitstring equivalents. All

computations are done in 32 bits and truncated.

An error is generated if a value won't fit in the number of bits defined for the type.

The valid ranges for values of byte, integer, and longint constants are as

follows:

Type Maximum Minimum

126 Chapter 6: Resource Compiler and Decompiler

fo

byte 255 -128

integer 65535 -32768

longint 4294967295 -2147483648

Boolean type. A boolean is a single bit with two possible states: 0 (or false) and 1

(or true). (true and false are global predefined identifiers.) Boolean values are

declared as follows:

boolean (constant | symbolic-value..:};

Type boolean declares a 1-bit field; this is equivalent to

unsigned bitstring[1]

Note that this type is not the same as a boolean variable as defined by Pascal.

Character type. Characters are declared as follows:

char { symbolic-value... };

Type char declares an 8-bit field (this is the same as writing string[1]).

- An example follows:

type 'SYMB' {

char dollar = "$",percent = "$";

E

resource 'SYMB' (128) í

dollar p

Js

String type. String data types are specified as follows:

string-type U length']’| | symbolic-value... 1;

String-type is one of the following:

[hex] string Plain string (no length indicator or termination character is

generated). The optional hex prefix tells DeRez to display it

as a hex-string. String{m] contains n characters and is ”

bytes long. Type char is shorthand for string[1].

pstring Pascal string (a leading byte containing the length

information is generated), aligned to a word boundary.

pstring{m] contains n characters-and is n+1 bytes long.

pstring has a built-in maximum length of 255 characters,

the highest value the length byte can hold. If the string is too

long to fit the field, a warning is given.

Resource Description Statements 127

estring C string (a trailing null byte is generated). Cstring(7]
contains 7-1 characters and is n bytes long. A cstring of

length 1 can be assigned only the value “", because
cstring [1] has room only for the terminating null.

Each may be followed by an optional length indicator in brackets ({]). Length is an
expression indicating the string length in bytes. Length is a positive number in the
range 1 < length < 2147483647 for string and cst ring, and in the range
lslengths255 for pst ring.

** Note: You cannot assign the value of a literal to a string-type.

If no length indicator is given, a pstxring or cst ring stores the number of
characters in the corresponding data definition. If a length indicator is given, the
data may be truncated on the right or padded on the right. The padding characters
for all string types are nulls. If the data contains more characters than the length
indicator provides for, the string is wuncated and a warning message is given.

Warning

A null byte within a cstring is a termination indicator and may confuse DeRez
and C programs. However, the full string, Including the explicit null and any
text that follows it, will be stored by Rez as Input.

Point and rectangie types. Because points and rectangles appear so frequently in
resource files, they have their own simplified syntax:

point | point-constant | symbolic-value...};
rect [rect-constant | symbolic-value... |;

where

point-constant = ‘{'x-integer-expr, y-integer-expr y

and

rect-constant = ‘{'integer-expr, integer-expr, integer-expr, integer-expr y’

These type-statements declare a point (two 16-bit signed integers) or a rectangle
(four 16-bit signed integers). The integers in a rectangle definition specify the
rectangle’s top-left and bottom-right points, respectively.

128 Chapter 6: Resource Compiler and Decompiler

F aiiz t : \

i

Fill and Align types

The resource created by a resource definition has no implicit alignment. It's

treated as a bit stream, and integers and strings can start at any bit. The £111 and

align type specifiers are two ways of padding fields so that they begin on a boundary

that corresponds to the field type. align is automatic and fill is explicit. Fill and

alignment generate zero-filled fields.

Fill specification. The fil1 statement causes Rez to add the specified number of bits

to the data stream. The fill is always 0. The form of the statement is

fill fill-size {‘(' length)’ l;

where fill-size is one of the following strings:

bit nibble byte word long

These declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by the length

modifier). Length is an expression < 2147483647.

The following fill statements are equivalent:

fill word[2];

fill long;

Fill bit[32];

The full form of a type statement specifying a fill might be as follows:

type 'XRES' (data-type specifications; fill bit[2];};

“ Note: Rez supplies zeros as specified by fill and align statements. DeRez

does not supply any values for fill or align statements, it just skips the

specified number of bits, or until data is aligned as specified.

Align specification. Alignment causes Rez to add fill bits of zero value until the data

is aligned at the specified boundary. An alignment statement takes the following

form:

align align-size ;

where align-size is one of the following strings:

nibble byte word long

Alignment pads with zeros until data is aligned on a 4-, 8-, 16-, or 32-bit boundary.

This alignment affects ali data from the point where it is specified until the next

align statement.

Resource Description Statements 129

Array type

An array is declared as follows:

| wide] array Í array-name } ‘['length']') ‘C array-list‘}’:

The array-list, a list of type specifications, is repeated zero or more times. The wide
option outputs the array data in a wide display format (in DeRez)—the elements that
make up the array-list are separated by a.comma and space instead of a comma,
return, and tab. Either a7ray-name or [length] may be specified. Array-name is an

identifier.

If the array is named, then a preceding statement must refer to that array in a
constant expression with the $Scountof(array-name) function; otherwise DeRez

will be unable to decompile resources of this type. For exaruple,

type 'STR#' { /* define a string list resource */

integer = $$Countof (StringArray) ;

array StringArray {

pstring;

}e

}e

The $Scountof function retams the number of array elements. (in this case, the

number of strings) from the resource data.

If [Jength] is specified, there must be exactly length elements.

Switch type

The switch statement specifies a number of case statements for a given field or

fields in the resource. The format is as follows:

switch ‘{’ case-statement... ‘}’;

where a case-statement has the following form:

case case-name : | case-body ; |...

Case-name is a string. Case-body may contain any number of type specifications
and must include a single constant declaration per case, in the following form:

key data-type = constant

Which case applies is based on the key value. For example,

type 'DITL' {/* dialog item list declaration from Types.r */

... type spectfications...

switch { /* one of the following */

130 Chapter 6: Resource Compiler and Decompiler

case Button:

boolean enabled, disabled;

key bitstring{7] = 4; . /* key value */

pstring;

case CheckBox::

boolean enabled, disabled;

key bitstring(7] = 5; /* key value */

pstring;

... ot cetera...

};

}i

Sample type statement

The following sample type statement is the standard declaration for a "WIND"

resource, taken from the Types.r file:

ype 'WIND'{

rect;
/* boundsRect */

integer documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc™8, xDocProc=16;

byte invisible, visible; /* visible */

fill byte;

byte noGoAway, gcoAway; /* has close box*/

fill byte;

unsigned hex lLongint; /* refCon */

pstring Untitled = "Untitled"; /* title */

a

The type declaration consists of header information followed by a series of

statements, each terminated by a semicolon (;). The header of the sample window

declaration is

type 'WIND'

The header begins with the type keyword followed by the name of the resource type

being declared—in this case, a window. You may specify a standard Macintosh

resource type, as shown in the “Resource Manager” chapter of Inside Macintosh , or

you may declare a resource type specific to your application.

Resource Description Statements

The left brace ({) introduces the body of the declaration. The declaration continues
for as many lines as necessary until a matching right brace (}) is encountered. You
can write more than one statement on a line, and a statement may be on more than

one line (like the integer statement above). Each statement represents a field in the
resource data. Recall that comments may appear anywhere where white space may
appear in the resource description file; comments begin with /* and end with */ as
in C.

An aside: symbol definitions. Symbolic names for data-type fields simplify the
reading and writing of resource definitions. Symbol definitions have the form

name = value [, name = value }...

For numeric data, the “= value’ part of the statement can be omitted. If a sequence
of values consists of consecutive numbers, the explicit assignment can be left out—if

value is omitted, it’s assumed to be one greater than the previous value. (The value is
assumed to.be zero if it’s the first value in the list.) This is true for bitstrings (and their
derivatives, byte, integer, and longint). For example,

integer documentProc, dBoxProc, plainDBox,

altDBoxProc, noGrowDocProc,

zoomProces8, rdDocProc=16;

In this example, the symbolic names documentProc, dBoxProc, plainDBox,
altDBoxProc, and noGrowDocProc are automatically assigned the numeric fa 0,
1, 2, 3, and 4.

Memory is the only limit to the number of symbolic values that can-be Sedarid fora

single field. There is also no limit to the number of names you can assign to a given
value, for example,

integer documentProc=0, dBoxProcsl, plainDBox=2, altDBoxProc=3,

rDocProc16,

Document=0, Dialog=1, DialogNoShadow=2, ModelessDialog=3,

DeskAccessory*16;

Resource — specify resource data

Resource statements specify actual resources, based on previous type
declarations,

Syntax

resource resource-type `C ID[, resource-name] [, attributes] ‘)' ‘C
| data-statement | , data-statement |}...]

yy

132 Chapter 6: Resource Compiler and Decompller

Description

Specifies the data for a resource of type resource-type and ID ID. The latest type

declaration declared for resource-type is used to parse the data specification. Data-

statements specify the actual data, data-statements appropriate to each resource

type are defined in the next section.

The resource definition causes an actual resource to be generated. A resource

statement can appear anywhere in the resource description file, or even in a separate

file specified on the command line or as an #include file, as long as it comes after

the relevant type declaration.

Data statements

The body of the data specification contains one data statement for each declaration

in the corresponding type declaration. The base type must match the declaration.

Resource Description Statements 133

Base Type Instance Types

String string, cstring, pstring, char
bitstring boolean, byte, integer, longint, bitstring
rect rect

point point

Switch data. Switch data statements are specified by using the following format:

switch-name data-body

For example, the following could be specified for the 'DITL' type given earlier:

CheckBox { enabled, "Check here" }

Array data. Array data statements have the following format:

‘T [array-element | ; array-element }...|‘}’

where an array-element consists of any number of data statements separated by
commas.

For example, the following data might be given for the 'STR#' resource defined
earlier:

resource 'STR#' (280) t
{ "this";

"ia";

"a";

“test”

Sample resource definition

This section describes a sample resource description file for a window. (See the
“Window Manager” chapter of inside Macintosh for information about resources in
windows.)

Here, again, is the type declaration given above under “Sample Type Statement”:

134 Chapter 6: Resource Compiler and Decompller

oN

om

fo

cype 'WIND'{

rect; /* boundsRect */

integer documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDoecProc,

zoomProc=8, rDocProc=16;

byte invisible, visible; /* visible */

fill. byte;

byte noGoAway, goAway; /* has close box */

fill byte; |
unsigned hex longint; /* refCon */

pstring Untitled = "Untitled"; /* xitle */

MF

Here is a typical example of the window data corresponding to this declaration:

resource 'WIND' (128,"My window",appheap, preload) { /* Status report window */

{40,80,120, 300}, /* Bounding rectangle */

documentProc, /* documentProc etc,. */

Visible, /* Visible or Invisible */

goAway, /* GoAway or NoGoAway */

0, /* Reference value RefCon */

"Status Report” /* Title */

he

This data definition declares a resource of type 'WIND' using whatever type
declaration was previously specified for 'WIND'. The resource ID is 128; the resource
name is “My window’. Because the resource name is represented by the Resource
Manager as a Pstring, it should not be contain more than 255 characters, The
resource name may. contain any character including the null character ($00). The
resource will be placed in the application heap when loaded, and it will be loaded
when the resource file is opened.

The first statement in the window type declaration declares a bounding rectangle for
the window:

rect;

The rectangle is described by two points: the upper-left comer and the lower-right
corner. The points of a rectangle are separated by commas as follows:

{top, left, bottom, right}

An example of data for these coordinates is

{40,80,120, 300}

Symbolic names. Symbolic names may be associated with particular values of a
numeric type. Notice that a symbolic name is given for the data in the second, third,

and fourth fields of the window declaration. For example,

Resource Description Statements 135

integer documentProc=0, dBoxProc=}, plainDBox=2,

altDBoxProc=3, noGrowDocProc=4, ;

zoomProcs8, rDocProc=16; /* windowType */

This statement specifies a signed 16-bit integer field with symbolic names associated
with the values 0 to 4 and 16. The values 0 through 4 need not be indicated in this
case; if no values are given, symbolic names are automatically given values starting at

zero, as explained previously.

In the sample window declaration, we gave the values true (1) and false (0) to

two different byte variables. For clarity, we used those symbolic names in the

window’s resource data; that is,

visible,
goAway,

instead of their equivalents

TRUE,

TRUE,

or

l,
1,

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide if-
then-else processing before other Rez processing takes place. This section describes
the preprocessor directives.

The syntax of the preprocessor is very similar to the C-language. preprocessor. Each

of the preprocessor statements must be expressed on a single line, beginning on a
new line and terminated by a Return character. Identifiers (used in macro names)
may be letters (A-Z, a-z), digits (0-9), or the underscore character (_). Identifiers

may not start with a digit. Identifiers are not case sensitive. An identifier may be any

length. i

Variable Definitions

The #define and #undef directives let you assign values to identifiers:

#define macro data

#undef macro

136 Chapter 6: Resource Compiler and Decompller

"7

The #define directive causes any occurrence of the identifier macro is to be

replaced with the text data, A macro can be extended over several lines by ending

the line with the backslash character (\), which functions as the Rez escape character.

For example,

#define poem “I wander \'
thro\' each \
charter\'d street”

(Quotation marks within strings must also be escaped.)

#undef removes the previously defined identifier macro. Macro definitions can

also be removed with the -undef option on the Rez command line.

The following predefined macros are provided:

Variable Value .

true 1

false 0

include directives

The #include directive reads a text file:

#include file

Include the text file file. The maximum nesting is to 10 levels.

w For example,

#include $$Shell("MPW") "MyProject:MyTypes.r"

Note that the #include preprocessor directive (which includes a file) is different

from the previously described include statement, which copies resources from

another file.

If-Then-Else processing

The following directives provide conditional processing:

#if expression

{ #elif expression |
fendif

‘ Note: expression is defined later in this chapter, with the #if and #elif

directives, expression may also include the following expression:

defined ‘(identifier)’

Preprocessor directives 137

The following may also be used in place of #if:

#ifdef macro

#ifndef macro

For example,

#define Thai

Resource '‘'STR '' (199) {

#ifdef English

"Hello"

#elif defined (French)

"Bonjour"

#elif defined (Thai)

"Sawati"

#elif (Japanese)

"Konnichiwa"

#endif

Fi

Resource description syntax

This section describes the details of the resource description syntax. For a complete l
summary definition, see Appendix D.

Numbers and literals

All arithmetic is performed as 32-bit signed arithmetic. The basic constants are

Decimal - nm.. Signed decimal constant between 4294967295 and
-2147483648.

Hex OXhAA... Signed hexadecimal constant between OX7FFFFFFF
and_.0X80000000.

Shhh... Alternate form for hexadecimal constants.

Octal 0000... Signed octal constant between 017777777777
and 020000000000.

Binary OBbbb... Signed binary constant between
0B11111111111111111111111111111211 and

0B10000000000000000000000000000000.

138 Chapter 6: Resource Compiler and Decompller

Literal ‘gaaa' A literal can contain one to four characters.

Characters are printable ASCII characters or

escape characters (defined below). If there are

fewer than four characters in the literal, then

the characters to the left Chigh bits) are assumed

to be $00. Characters that are not in the printable

character set, and are not the characters \' and \\

(which have special meanings), can be escaped
according to the character escape rules. (See
“Strings” later in this section.)

Literals and numbers are treated in the same way by the Resource Compiler. A literal

is a value within single quotation marks; for instance, 'A' is a number with the value

65; on the other hand, "A" is the character A expressed as a string. Both are

represented in memory by the bitstring 01000001. (Note, however, that "A" is nota

- valid number and 'A' is not a valid string.) The following numeric expressions are

all equivalent:

‘tp! -

66
1A'+1

Literals are padded with nulls on the left side so that the literal 'ABC' is stored as

shown in Figure 6-3

tABC' =

Figure 6-3
Padding of Literals

Expressions

An expression can consist of simply a number or literal. Expressions can also

include numeric variables and the system function:

S$countof ‘(’ array-name ‘)’

Expressions can include the expression operators listed in Table 6-1. Table 6-1 lists

the operators in order of precedence with highest precedence first—groupings

indicate equal precedence. Evaluation is always left to right when the priority is the

same.

Variables are defined following the table.

Resource description syntax 139

Table 6-1
Resource Description File Expression Operators

Operator Meaning

1. (expr) Parentheses can be used in the normal manner to force precedence in

expression calculation.

2. -epr Arithmetic (two's complement) negation of expr.
~expr Bitwise (one's complement). negation of expr.
‘expr Logical negation of expr.

3. exprl * expr2 Multiplication.

expr] / expr2 Division.

exprl % expr2 Remainder from dividing expr] by expr2.

4, expri + expr2 Addition.
exprl ~ expr2 Subtraction.

5. exprl << expr2 Shift left—shift expr1 left by expr2 bits.
exprl >> expr2 Shift right—shift expr1 right by expr2 bits.

6. exprl > expr2 Greater than.
apr] >= expr2 Greater than or equal.

expri < expr2 Less than.

exprl <= expr2 Less than or equal.

expr] = = expr2 Equal.

expri != expr2 Not equal.

8. exprl& expr2 Bitwise AND.

9. expri ^ expr2 Bitwise XOR.

10. expri! expr2 Bitwise OR.

11. expri && expr2 Logical AND.

12. expri || expr2 Logical OR.

‘The logical operators !, >, >=, <, <=, ==, |=, &&, | | evaluate to 1 (true) or 0

(false).

Variables

There are some Resource Compiler variables that contain commonly used values.

All Resource Compiler variables start with $$ followed by an alphanumeric
idenufier.

140 Chapter ó: Resource Compiler and Decompller

The following variables have string values (typical values are given in parentheses):

$$Version

$$Date

$$Time

$$Shel1 ("strExpr’)

Version number of the Resource Compiler.

c'v1.0 ")

Current date. Useful for putting timestamps into

the resource file. The format is generated through

the ROM call IUDateSuring. ("Thursday, February

20, 1986")

Current time. Useful for timestamping the

resource file. The format is generated through the

ROM call [UTimeString. ("7:50:54 AM")

Current value of the exported Shell variable

{strExpn. Note that the curly braces must be

omitted, and the double quotes must be present.

$$Resource ("fllename", ' type’, ID | “resourceName")

Reads the resource ' type’ with the ID Dor the

name "resourceName" from the resource file

"filename", and returns a string.

The following variables have numeric values:

$$Hour

$$Minute

$$Second

$$Year

$$Month

$$Day

$$Weekday

Current hour. Range 0-23.

Current minute. Range 0-59.

Current second. Range 0-59.

Current year.

Current month. Range 1-12.

Current day. Range 1-31.

Current day of the week. Range 1-7 (that is,

Sunday — Saturday).

rn A

Strings
There are two basic types of strings.

Text string "a..." The string can contain any printable character

except‘ " 'and ‘\’. These and other characters

can be created through escape sequences. Gee

Table 6-3.) The string "” is a valid string of

length 0.

Resource description syntax 141

Hex string SAR..." Spaces and tabs inside a hexadecimal string are
ignored. There must be an even number of
hexadecimal digits. The string $"" is a valid
hexadecimal string of length 0.

Any two strings (hexadecimal or text) will be concatenated if they are placed next to
each other with only white space in between. (In this case, returns and comments are
considered as white space.)

Figure 6-4 shows a Pascal string declared as

pstring {10};

whose data definition is

"Hello";

BOORGE COG
Figure 6-4
Internal representation of a Pascal string

In the input file, string data is surrounded by double quotation marks ("). You can
continue a string on the next line; the semicolon (;) terminates the string data. A
side effect of string continuation is that a sequence of two quotation marks ("") is
simply ignored. For example,

"Hello "nout "

“there. ";

is the same string as

"Hello out there.";

To place a quotation mark in a string, precede the quotation mark with a backslash
A").

Escape characters

The backslash character (\) is provided as an escape character to allow you to insert

nonprintable characters in a string. For example, to include a Return character in a
string, use the escape sequence

\r

Valid escape sequences are given in Table 6-3.

142 Chapter 6: Resource Compiler and Decompiler

Table 6-2 :

Resource Compiler escape sequenc

Escape sequence Name Hex value Printable equivaient

\e tab $09 none

\b backspace $08 none

\xr return $0D none

\n newline $0D none

\f form feed $0C none

(\v vertical tab $0B none

x \? rubout $7F none

WA backslash $5C \

\! single quote $3A '

\" double quote $22 r

% Note: On the Macintosh, newline is identical to retum.

You can also use octal, hexadecimal, decimal, and binary escape sequences to

specify characters that do not have predefined escape equivalents. The forms are as

follows:

Base Form Number of digits Example

2 \OBbbbbbbbb 8 \0B01000001

8 \ ooo 3 \101

10 \0Ddda 3 \0D065

16 \OXhA 2 \0x41

16 \$hh 2 \$41

' Some examples are

Nc. \077 /* 3 octal digits */

\OxFE /* ‘0x’ plus 2 hex digits */

\SFL\SF2\$F3 /* ‘$f plus 2 hex digits

\0d099 /* ‘Od’! plus 3 decimal digits */

+ Note to C programmers: An octal escape code consists of exactly three digits:

for instance, to place an octal escape code with a value of 7 in the middle of an

alphabetic string, write AB\OO7CD, not AB\7CD.

Resource description syntax 143

fo ca

Chapter 7

Putting Together an
Application, MPW Tool, or
Desk Accessory

Contents

Overview of the Build Process xx

The Structure of a Macintosh Application xx

Unking xx

What to link with x

Linking multilingual programs x

File Types and Creators xx

Putting Together an MPW Tool xx

Putting Together a Desk Accessory or Driver xx

Linking a desk accessory or driver x

The desk accessory resource file x

Using Make xx

Format of a makeFile x
Dependency rules x

Double-f dependency rules x
Default rules x

Built-in default rules x

Directory dependency rules x
Variables in makefiles x

Shell variables x
Defining variables within a makefile x

Built-in Make variables x

Quoting in makefiles x
Comments in makefiles x
Executing Make’s output x
Debugging makefiles x

An example x

146 Chapter 7: Putting Together an Application. MPW Tool, or Dask Accessory

fo

r3

More About Linking xx

Linker functions x
Segmentation x ;

Segments with special treatment x
Setting resource attributes x
Controlling the numbering of code resources x
Resolving symbol definitions x .

Multiple external symbol definitions x
Unresolved external symbols. x

Linker location map x
Optimizing your links x

Library Construction xx

Using Lib to build a specialized library x

Removing unreferenced modules x
Guidelines for choosing files for a specialized library x

Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory 147

Overview of the build process

This chapter describes the mechanics of building a program—the steps involved are
nearly the same for applications, MPW tools, desk accessories, and drivers. All

programmers should read the opening sections of this chapter, which explain the

entire build process for an application, the standard case. Later sections explain
what's different about building an MPW tool, desk accessory, or driver.

Building a program consists of the following steps:

1..Create source files and compile them. Each source file is compiled or assembled
to produce a corresponding object file. (For information on writing programs in
Pascal, C, or assembly language, and including the proper interface or include

files, see the appropriate MPW language manual.) l

2. Create additional resources with ResEdit or Rez If your program requires any
additional resources (other than code resources), you can create them by using
the resource editor (ResEdit) or Resource Compiler (Rez). See Chapters 5 and 6
for detailed information.

3. Create the final executable file with Link. The object files are linked together,
along with any needed library routines, into either a new resource file or an

existing one (replacing the 'CODE', 'DRVR', or other executable resources).

Note: For building a desk accessory or driver in Pascal or C, an additional step is
tequired—run Rez to create the final 'DRVR' resource. For details, see “Putting
Together a Desk Accessory or Driver,” later in this chapter.

Figure 7-1 illustrates the complete process.

148 Chapter 7: Putting Together an Application. MPW Tooi. or Desk Accessory

ae

ae

Shell editor

Object
files

=.
‘OBJ “

executable

code resources

APPL, MPST....

resource

file
=.PSrc

(Duplicate)

Overview of the build process 149

Figure 7-1
Building a program

For example, the following series of commands compile, “Rez,” and link the sample
Pascal application Sample.p:

Pascal Sample.p

Rez Sample.r -o Sample

Link Sample.p.o d
"({Libraries}"Interface.o ð
"{Libraries}"Runtime.o ð

"{PLibraries}"Paslib.o 9
-o Sample

This process is usually automated by using the Make tool. (See the sample makefiles
in the Examples folders, and the “Using Make” section later in this chapter.)

The structure of a Macintosh application
Macintosh files have two forks: a-resource fork and a data fork. The resource fork
contains a number of resources. The data fork may contain anything the application
puts there. On the Macintosh, a program is a file whose resource fork contains code
resources (CODE! or other executable resources), and in most cases additional

resources containing strings, dialogs, menus, and the like. The code resources for
applications and tools must contain a main program or an execution starting point.

Desk accessories and drivers, by contrast, don’t require a main program, but
contain collections of routines that are called individually when the desk accessory or
driver is used.

The simplest possible application has two resources in the resource fork and nothing
in the data fork. The first resource is a 'CODE' resource with ID = 0. (The Linker
creates this resource, which contains the jump table and information about the
application’s use of parameter and global space.) The second resource is a 'CODE'
resource with ID = 1, which contains the application’s code segment. For more
information, see the “Segment Loader” chapter of inside Macintosh.

150 Chapter 7: Putting Together an Applicaton, MPW Tool, or Desk Accessory

ea.

Eee eeeeeeEeEeEEOEyeeeeeEeEaEEEEyeyeEyEyEyE~Ly——»yy— — —

Linking

This section describes how to link an application, MPW tool, desk accessory, or

driver.

“ Note: For more information about Linker functions, see “More About Linking”

in this chapter. The Link command itself is described in Chapter 9. The MPW

object-file format is described in Appendix H.

The Linker links object files into an application, MPW tool, desk accessory, driver,

or other executable resource. The Linkers output is an executable object file. The

Linker links together the compiled or assembied object files, along with any needed

library routines, into either an existing resource file (replacing the 'CODE’, 'DRVR’,

or other executable resources) or a new one (Figure 7-2).

Object (.0} Libraries

files
‘OBS '

Rs)

‘OBJ '

Code
resources
APPL or
MPST

Figure 7-2
Linking

The Linker resolves all symbolic references, and also controls final program

segmentation. A related tool, Lib, provides facilities for modifying and combining

object files (libraries).

Linking 151

The Linker’s default action is to link an application (type APPL, creator "2222",

placing the output segments into 'CODE' resources. You can set a file's type and
creator with Link’s -t and -c options. (See “File Types and Creators” below.)

What to link with

Applications, tools, and desk accessories should be linked with. the libraries listed in
Table 7-1. It’s wise to link new programs with all of the libraries that might be needed.
If unnecessary files are specified, the Linker wili display warnings indicating that they
can be removed from your build instructions.

Table 7-1
Files to ink with

Inside Macintosh interfaces

{Libraries}Hnterface.o

Runtime support. Link with one of the following:

{Libraries}Runtime.o if no part of the program is written in C
{CLibraries}CRuntime.o if any part of the program is written in C

Pascal Ubraries

{PLibraries}PasLib.o Pascal language library
{PLibraries}SANELib.o SANE numerics library

C Hbraries

{CLibraries}CInterface.o Macintosh interface for C
{CLibraries}CSANELib.o SANE numerics library
{CLibraries}Math:o math functions

{CLibraries}StdCLib.o Standard C Library

Specialized libraries. You may also call routines in the following libraries:

{Libraries}ObjLib.o object-oriented programming (Pascal and Assembler)

{Libraries}ToolLibs.o routines for MPW tools

Desk accessories

{Libraries}DRVRRuntime.o driver runtime library

For details about linking tools and desk accessories, refer to “Linking a Tool” and
“Linking a Desk Accessory or Driver” later in this chapter.

152 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

a

Linking multilingual programs

When you link programs that use libraries from more than one language, the Linker
may detect several duplicate entry points..Normally it doesn’t matter which of the
duplicate copies of a particular routine get linked with your program. (You can use
the Linker’s -w option to suppress the duplicate definitions warnings.)

However, programs written partly in C and partly in assembly language or Pascal
require special precautions. When you link C code with other languages, link with the
file CRuntime.o and not with Runtime.o. If execution is expected to begin with the C
function main (), no special action is necessary. However, if your main program is
written in assembly language or Pascal, but part of your program is written in C, the
object file containing your main program must appear before CRuntime.o in the list
of object files passed to the Linker.

File types and creators
When you execute a command, the Sheil determines how to nun it based on its file
type. Files of type APPL are considered applications and are run as if launched from
the Finder. Files of type MPST are considered MPW tools and are run within the Shell
environment. Files of type TEXT are taken to be command files and are interpreted
by the Shell. An attempt to run a file of any other type produces an error message.
Table 7-2 summarizes file types and creators.

Tabie 7-2
File types and creators

Type of Program Type Creator

Application APPL l any

MPW tool ` MPST . ‘MPS '

Desk accessory DFIL ‘DMOV

Command file TEXT any

* Note: Each application has its own unique creator (or signature)—see the
“Finder Interface” chapter of /nside Macintosh,

You can set a file’s type and creator with the -t and -c options to Link, Rez, or SetFile.

Putting together an MPW tool 153

Putting together an MPW tool
Typically, when a program is run on the Macintosh, it takes over the screen, puts up

its own-menus, and replaces the previous program. Programs with this behavior

(such as MacPaint or MacWrite) are called applications. All of the programs
previously available on the Macintosh, except for desk accessories, fall into this

category.

The Shell also provides an environment for a new type of program called an MPW
tool. Tools are similar to desk accessories in many aspects of their behavior. When a
tool is run from the Shell, it does not replace the Shell nor erase the screen, but
instead runs within the Shell environment and has access to the facilities provided by
the Shell. The Assembler, the Compilers, Link, Make, and so on are all tools in the
MPW system.

For a description of the facilities available to an MPW tool, see Appendix F, “Writing

an MPW Tool.”

Linking a tool

Linking an MPW tool is the same as linking an application, except that the file type
must be set to MPST and the creator to 'MPS ' (MPSspace):

Link -t MPST ~c "MPS " ...

Sample tools are provided in the Examples folders for each of the MPW languages——
refer to the sample makefiles for exampies of the commands used to build a tool.
Note that the sample tools are linked with the files Stubs.a or Stubs.c— these files
contain dummy library routines that are used to override standard library routines

that aren’t used by MPW tools, thus reducing the tool’s code size.

A
kood Note: As a matter of convenience, tools are usually kept in the {MPW}Tools

folder. This allows you to invoke the tool by using its simple name instead of its
full pathname. {MPW}Tools is one of the directories that the Shell automatically
searches when a command name is given with a partial pathname. (The Shell
variable {Commands} contains a comma-separated list of directories to be
searched; you can easily modify it to include additional directories.)

Putting together a desk accessory or driver

A desk accessory is a 'DRVR' resource whose resource name begins with a null

character ($00), and that resides in the System file. To make it convenient to write a

desk accessory or driver in Pascal or C, MPW provides the following:

154 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

Pa

a The library DRVRRuntime.o, which contains the glue for the driver routines open, .
prime, status, control, and close.

m The resource type "DRVW’, declared in :RIncludes:MPWTypes.r. The 'DRVW'!
resource is a special case of a 'DRVR' resource, and contains constants that point
to the addresses of the driver routines in DRVRRuntime.o. i

For information on writing a desk accessory using the 'DRVW resource and
DRVRRuntime routines, see Appendix G, “Writing a Desk Accessory or Other Driver
Resource.” The remainder of this section describes how to put together a desk
accessory and install it.

Putting together a desk accessory or driver requires two steps:
“1. Link your driver code with the DRVRRuntime library and with any other libraries

you need. The object code is linked into a code resouce of type 'DRVW’', an
intermediate form of the standard 'DRVR' resource.

` 2. Use the Resource Compiler, Rez, to create the final driver file. That is, you'll need
to compile the linked 'DRVW’' resource into a standard "DRVR' resource, using the
'DRVW' type declared in :Rincludes:MPWTypes.r, together with any other
resources your desk accessory may require.

` You'll then need to instali your desk accessory in the System file by using the
Font/DA Mover.

Figure 7-3 illustrates the process of building a desk accessory or other driver.

Putting together a desk accessory or driver 155

compiled ORVR-
driver code Runtime.o
type ‘OBJ" library

other

libraries

additional

resources

Resource Compiler
(Rez)

driver file

DAVR
resource

(type DFIL)

Figure 7-3
Building a desk accessory with ORVRRunitime

156 Chapter 7: Putting Together an Applicaton, MPW Tool, or Desk Accessory

re,

“ Note: Of course, it’s still possible to create a desk accessory directly in

assembly language, without using DRVRRuntime.

Linking a desk accessory or driver

Linking a driver requires the following:

a The Linker’s -rt option must be specified. The -rt option indicates the link of a desk
accessory or driver and sets the resource type and ID. (The default, if no -rt option

is specified, is to output 'CODE' resources beginning with resource ID 0.)

_ @ When you link a desk accessory or driver, the code must be in a single segment
(that is, no jump table is. constructed). You can map code from several segments

into a single segment with the -sg or -sn options.

m Desk accessories written in Pascal or C must be linked with DRVRRuntime.o, which

should appear first in the list of object files.

For example, the following command links the sample desk accessory file
Memory.c.o, placing the output in the file Memory. (This output is the intermediate
'DRVW" resource, which must be converted into a 'DRVR' resource as explained in
the next section.)

Link -w @
-rt DRVW=0 a
-sn Main=Memory ð
"{Libraries}"DRVRRuntime.o # must appear first ð
Memory.c.o ð
“(CLibraries}"CRuntime.o ð
"{CLibraries}"CInterface.o @
-o Memory.DRVW

This command does the following:

m The -rt option sets the output resource type to ‘DRVW’ and the resource ID to 0.

Note: This ID must match the ID specified in the $$resource statement in the
Rez input file. Note also that any additional resources “owned” by the desk

accessory must observe a special numbering convention, as described in the

“Resource Manager” chapter of Inside Macintosh.

m The -sn option combines the segment Main into the segment Memory.

u The specified files are linked. The DRVRRuntime.o library must be. the first. object
file in the link list. This ordering ensures that the main entry point in CRuntime.o
will be overridden by the DRVRRuntime.o entry point. (A Linker warning will call

attention to this.) The main entry point in CRuntime.o cannot be used for desk

accessories.

Putting together a desk accessory or driver 157

Desk accessories must not call routines that use global variables, and therefore are

less likely to need routines from the Pascal, C, and specialized libraries listed in
Table 7-1. In a correct link, the Linker’s progress information will report “Size of
global data area: 0,” and “No data initialization.” If global data is somehow

allocated, the link will succeed, but the desk accessory will not run correctly.

The desk accessory resource file

The last step in the construction of a desk accessory or driver is to put together the
DRVR header with the linked code. The following example of a Resource Compiler
(Rez) input file shows how this is done:

#include "“Types.r”

#include "MPWTypes.r"

type 'DRVR' as 'DRVW';

#define DriverID 12 /* The number is irrelevant */

resource 'DRVR' (DriverID, "\0x00Memory", purgeable) {

dontNeedLock, /* OK to float around, not saving ProcPtrs */
needTime, /* Yes, give us periodic Control calls */

dontNeedGoodbye, /* No special requirements */

noStatusEnable,

ctlEnable, /* Desk accessories only do Control calls */

noWriteEnable,

noReadEnable,

5*60, /* Wake up every 5 seconds */

updateMask, /* This DA only handles update events */
0, /* This DA has no menu */

"Memory", /* This isn't used by the DA */
$$resource ("Memory.DRVW", 'DRVW', 0)

}e

The header information contains the details of the desk accessory’s event mask,

menu ID, and so on. (See the “Device Manager” chapter of Inside Macintosh and the
file MP WTypes.r for information about the format of a 'DRVR' resource.) The
$$resource directive then appends the linked object code to the DRVR header
where it belongs.

If your desk accessory has any owned resources, such as 'STR#! or "WIND" resources,

you can add them to your desk accessory’s resource compiler input.

To build the desk accessory resource, use the Rez command to compile the resources
you have specified, and set the file type and creator for a Font/DA Mover document:

Rez -c DMOV -t DFIL Memory.r -o Memory

158 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

The file type DFIL indicates a document file for the Font/DA Mover; the creator
DMOV indicates a Font/DA Mover document (suitcase icon).

To install a desk accessory, use the Font/DA Mover to place the desk accessory in the
System file. You can do this from MPW as follows:

“Font/DA Mover" Memory

After exiting the Font/DA Mover, you can execute the desk accessory by selecting its
name from the Apple menu. :

E

Using Make
The Make tool enables you to keep track of all of the components of 2 program and
their relationships to each other—then, when one component of a program is
updated, Make lets you automatically update all other parts of the program that
depend upon it. These updates may be such things as compiles, assemblies, links,
and resource compiles.

Make reads a makefile that describes the dependencies of the various components of
a program, and outputs commands on the basis of those dependencies. This section
describes how to write a makefile and use Make. (The Make command and
command-line options are described in Chapter 9.)

Format of a makefile

A makefile is a text file that describes dependency information for one or more target
files. A target file is a file to be rebuilt; it depends on one or more prerequisite files
which must exist or be up-to-date before the target can be rebuilt. For example, an
application would depend upon its source file or files, a number of library files, and
resource files. If any of a target’s prerequisite files are newer than the target, then the
target needs to be rebuilt.

A makefile can include dependency rules, variable definitions, and comments.
Table 7-3 summarizes the syntax of a makefile, and the sections following the table go
into more detail. -

Using Make 159

Table 7-3
Makefile summary

targetFile... f | prerequistieFile... }
[SheliCommands.... ì

targetFile... ff I prerequisiteFile... |
SheliCommands...

[suffià f -sufix

SheliCommands...

targetDirectory: ... f searchDirectory: ...

variableName = stringValue

comment

{name}

Return

Dependency rule, with or without build commands (f
is Option-F on the keyboard). This rule means that
targetFile depends upon prerequistteFile. If any of the
prerequisites are newer than the target the subsequent
Shell commands are output.

Important: Build commands must begin with a space

or tab.

Dependency rule, requiring its own set of build
commands

Default rule (specifies suffix dependencies)

Directory dependency rule Cused with default rules)

Variable definition

Comment

Variable reference

Quotes (as in the Shell)

Line continuation character

“ Note: Makefile input lines may not exceed 255 characters.

A makefile for the sample Pascal application (Sample) is shown below:

Variable Definitions ###

Libs = "{Libraries}"Interface.o ð
"{Libraries}"Runtime.o ð

“{PLibraries}"Paslib.o

= Dependency Rules ###

Sample fT Sample.r

Rez Sample.r -o Sample

Sampie ff Sample.p.o

Sample.r

Link Sample.p.o ð

{Libs} ð
-o Sample

160 Chapter 7: Building a Program

Sample depends on Sample.r

Sample depends on Sample.p.o ð
and Sample.r

D

poy

go

Sample.p.o f Sample.p

Pascal Sample.p S

Sample makefiles are contained in the Examples folders for each of the MPW

languages (introduced in Chapter 1).

i Dependency rules

A dependency rule specifies the component (prerequisite) files of a given target file,
together with a list of the commands needed for building the target file. These

commands will be written to standard output if any of the prerequisite files is newer

than the target file. The general form of a dependency tule is

targetFile... f | prerequisiteFile ... |
{ SheliCommands ... }

u The first line is called the dependency line. It consists of one or more target file

names, followed by the f (Option-F) character (meaning “is a function of),
followed by a list of prerequisite files separated by blanks. Make looks at the
modification dates of the prerequisite files (and their prerequisites, if any) and
decides whether the target needs to be rebuilt

w All subsequent lines that begin with a space or tab are build command lines. These
are Shell commands that will be output if the target needs updating. (When Make
writes these command lines to standard output, the initial space or tab is omitted.)

For example,

Sample.p.o f Sample.p

Pascal Sample.p

s The first line in the example is a dependency rule for the Pascal object file

Sample.p.o. This rule states that Sample.p.o depends on the source file
Sample.p.

s The second line is the associated build command line. If Sample.p is newer than

Sample.p.o, or if Sample.p.o doesn’t exist, the command Pascal Sample.p

is written to standard output.

More than one target file name can appear on the left-hand side of an ‘f rule.” Each
target file on the left-hand side depends on all of the files listed on the right-hand

side (and has the same build commands, if specified). If more than one target file is

specified, it’s exactly as if a separate dependency rule had been given for that target.

The built-in Make variable {Targ} has the value of the current target.

You can also state multiple dependency lines for a single target—multiple

dependencies mean that the target depends on all of the prerequisite names that

appear on all of the lines. If no build commands are specified for a dependency line,

the build commands are taken from other dependency rules, or default rules, if

present.

Using Make 161

od kó Note: With the standard “single-f” form of the dependency rule, only one
sequence of build commands may be specified for any given target. Thus, on
dependency rule specifies a target’s build commands, and additional rules
simply specify additional dependencies.

Double-f dependency rules

Double-f dependency rules are slightly different from the standard single-f rules.
Syntactically, a double-f dependency entry is the same as a single-f entry, except

that ff is used in place of f. The difference is that each Sou -f tule requires its own
set of build commands. For example,

TargetFile ff A B

build commands-1

TargetFile ff C D
build commands-2

If the target is out-of-date with respect to one or more dependency set, each of the
corresponding sets of build commands will be output. That is, if TargetFile is out-of-
date with respect to both A and C, then both sets of build commands are output. (in
single-f rules, only one set of build commands can be specified for any one target.)

Double-f miles are useful for separately building code and resources, as shown in the

makefile for Sample. (For more examples, see the sample makefile at the end of this
section.)

Default rules

Default rules express dependences between pairs of files whose names are the same
but whose suffixes differ. They have the following form:

Asuffixl f .suffix2

SheliCommanas ...

(Note that the period must be present for a default rule to be recognized. The period
is taken as part of the suffix.)

The power of default rules is that many specific dependencies and build commands
can be expressed by a single rule. Make has built-in default rules for assemblies and
for C and Pascal Compilers. You need to specify only the dependencies not covered

by default rules.

Default niles are applied only when no build commands have been given for a
particular target. You can override the built-in default rules by placing your own
versions of the default rules in the makefile. You can augment the default rules for a

particular file by additional dependency rules, as long as these dependency rules do

not include build commands.

162 Chapter 7: Building a Program

ETS

FO

A, >

Default rules of the form

f sue
“specify dependencies between files with any name and files with the same name
followed by the given suffix.

% Note: Default rules of this form slow down Make processing, because the empty
left-hand side of the rule ‘causes it to match against all filenames.

Built-in default rules A compiled or assembled object file is dependent on its
source file—this dependency is typically handled by the built-in default rules.
(Additional dependencies may result from other units that you use or refer to in your
file~-these may be include files, C header files, or Pascal USES files.)

The data fork of Make contains the following built-in default rules:

-A.0 f a

{Asm} {AOptions} {DepDir}{Default}.a- -o {TargDir}{Default}.a.o

-C.0 f <ë

{C} {COptions} {DepDir}{Default}.c -o {TargDir}{Default}.c.o

-p.o f .p

{Pascal} {POptions} {DepDir}{Default}.p -o {TargDir} {Default}.p.o

{Asm}, {Pascal}, and {C} are built-in Make variables. Their initial values are

{Asm} Asm
{Pascal} Pascal

{C} C

{AOptions}, (POptions}, and {COptions} are initially null; you can customize the
default-rule build commands by defining these variables in the makefile. (For
instance, you might want to specify the location of your include files by adding a
-i pathname option).

You can redefine these variables—variable definitions can be overridden in your

makefile, on the command line (with Make’s -d option), or by an exported Shell

variable. See “Variables in Makefiles” below for information.

{DepDir} and {TargDir} are built-in Make variables that allow default rules to work in
the same or different directories:

{DepDir} The directory component of the prerequisite name

{TargDir} The directory component of the target name

Using Make 163

Note: {DepDir} and {TargDir} have values only when used in the build

commands of default rules for which directory dependency rules were applied.

In all other cases these variables evaluate to the nuli string so that they won't

interfere with the normal behavior of default rules. Directory dependency rules

are explained in the following section.

{default} is another built-in variable; its value is the common part of the filenames

matched by a default rule (defined dynamically when Make applies the default tule).

% Note: When expanding the built-in variables {Targ}, (NewerDeps}, (TargDit},

{DepDir}, and {Default} in build: commands, Make automatically quotes their

values, if necessary, because they will represent filenames or parts of filenames.

Don’t quote them yourself.

Directory Dependency Rules Normally, default rules work only within a single

directory. Directory dependency rules allow default rules to be applied across

directories. Just as default rules imply changing a filename suffix between a target

filename and a prerequisite filename, directory dependency rules imply changing

the directory prefix of the filenames. Directory dependency rules have the form

targetDirectory: ... f searchDirectory : ...

Directory dependencies are identified by dependency names that end in colons

(that is, directory names). For example,

ObjFiles: f SreFiles:

The above rule, together with the standard default rules, would mean, for example,

that ObjFiles:name.c.o depends upon SrcFiles:name.c. No build commands may

be given for a directory dependency rule. More than one directory name may

appear on either side of the rule. The current directory can be specified by a single

colon (;) on either side of a directory dependency tule.

Directory dependency rules are applied only during the processing of default rules. If

Make is applying a default rule and encounters a target name with a directory

component, Make checks for a directory dependency rule for that directory. If one

exists, Make tries prerequisite filenames with the directory prefixes given on the

right-hand side of the rule. ‘The names are tried in the order that they appear in the

rule.

164 Chapter 7: Building a Program

Point

“ Note: If default rules are meant to be applied from a directory A: to a directory
B: and also within A: (that is, from A: to A:), then A: should appear on both the
left and right sides of the directory dependency rule. For example,

A: f A: B:

Variables in makefiles

You can use exported Shell variables and built-in Make variables within makefilés.
You can also define variables within a makefile or on the Make command line.

Shell variables

Make automatically defines exported Shell variables before it reads the makefile, so
you can use Shell variables in dependency lines and build commands.

~ If Make doesn’t recognize a variable reference in a build command line, it is left’
unchanged, so that it can be processed later by the Shell. (Unidentified variables in
dependency lines are reported as errors.)

a ee N
Caution -

Exported Shell variables override Make variables with the same names. An attempt
to redefine a Shell variable in the makefile results ina waming message. bes
———_—. $$

Defining variables within a makefile

Variable definitions are makefile entries of the form

variableName = stringValue

Subsequent appearances of {varlableNamd will be replaced by stringValue. One
common use of variables is to parameterize the directory portion of filenames so that
you can easily adapt a makefile to different directory setups.

* Note: Make variables in build command lines are not expanded until Make
generates the build commands—because command generation follows all
dependency rule processing, there’s no requirement that variable definitions
appear before their references in build command lines.

You can define a variable on the command line with Make’s -d option; this overrides
any definition within the makefile.

Using Make 165

Built-in Make variables

The following built-in Make variables have values that are dynamically assigned as

Make generates the build commands:

{Targ} The complete filename of the target on the left-hand side of the

dependency rule whose build commands are being processed.

{NewerDeps} A list of the names of all of the target's. direct prerequisites that

were newer than the target; that is, the files that caused the

target to be out-of-date.

These built-in variables can be used only in build command lines, because they have

no value when dependency lines are processed.

When default rules are applied, the following variables are also defined:

{Default} The common part of the filenames matched by a default rule.

{TargDir} The directory component of the target name.

{DepDir} The directory component of the prerequisite name.

Note: When expanding the built-in variables {Targ}, {NewerDeps}, {TargDisl,

{DepDin, and {Default} in build commands, Make. automatically quotes their

values, if necessary, because they will represent filenames or parts of filenames.

Don’t quote them yourself.

Quoting in makefiles

The Make command supports several of the Shell's quoting conventions. Quoted

items can appear in dependency lines, variable definition lines, and build

command lines. The following quoting characters are used:

a Quotes the subsequent character, that is, the ð is removed and

the subsequent character is taken to be a literal character

(except when dReturn is used at the end of a line as a

continuation character).

A Quotes the enclosed string. The single quotes are removed.

tae Quotes the enclosed string, but {...} variable references are

expanded, and the escape character is processed. The

double quotes are removed.

Quotes are processed as follows:

m In dependency lines and in the name part of variable definitions, quotes literalize

the quoted characters (useful for file or variable names).

a On the right-hand side of variable definitions, quoted items are passed through

“as is,” so that the quoting will take effect when the variable is expanded.

166 Chapter 7: Building a Program

fos

iS,

= In build command lines, quoted items are passed through as-is, so that the
quoting will take effect when the build commands are executed by the Shell.

Line continuation character

Like Shell commands, dependency and variable definition lines can be continued
over more than one line with dReturn. dReturn causes the 3, any blanks preceding
the 9, the retum, and any leading blanks on the next line to be replaced with a single
Space. Comments at the ends of such continued lines do not comment out the
continuation character.

Comments in makefiles

The number sign (#) indicates a comment. Everything from the # to the end of the
line is ignored. Comments always end at the next return, even if the return is
preceded bya ð.

Comments may appear in dependency lines, variable definitions, and build
command lines, or on lines by themselves. Comments in build command lines are
passed through to standard output where they are processed as comments by the
Shell.

Executing Make’s output

Make generates a set of commands, which must be executed separately to perform
the actual updates. You can automatically execute Make’s command output by calling
Make from a Shell command file. The simplest form of such a command file consists
of the two commands:

Make {"Parameters"} > MakeOut

MakeOut

The first command executes Make, using the parameters passed to the command file.
(See the description of the {"Parameters"} variable in Chapter 3.) Output (that is,
build commands) is redirected to the file MakeOut. The second line of the command
file executes MakeOut.

Debugging makefiles

When Make doesn’t seem to be doing what you expect, the next step is to debug your
makefile. The following procedures are helpful in debugging makefiles:

Using Make 167

1. Use Make’s -v option to generate verbose output. This output tells you which files
don’t exist, which files are up-to-date, which files need rebuilding, and why they
are out-of-date. It also points out which files don’t have build rules and, thus, are

assumed to be artificial targets (targets that are abstract and not really built— see,
for example, Note.8 in the Make example that follows this section).

2. Use Make’s -s option to show the structure of your target’s dependency relations.

This option displays the complete structure of dependencies, including those

generated by default rules. A target (or subtarget) that doesn’t appear or that has
no prerequisites may indicate a typographical error in the dependency line for
that target (or in the line for one of the targets that depend on it). A target that
appears at the wrong level in the dependency graph indicates an error in your
dependency specification.

3. Use the -u option to find unreachable targets. These may be parts of your target

dependencies that did not get connected due to a bad or mistyped rule.

Problems due to command generation before execution

Make generates commands that must be separately executed to perform the actual
updates. Because Make must determine what build commands to generate before any
targets are actually built, the possibility of “phase errors” is introduced; that is,

unexpected behavior may occur when generated commands alter the assumptions
that Make used to determine whether targets were out-of-date. (You're not likely to

experience these problems unless you have build commands that do things such as
deleting files that Make thinks are already up-to-date.)

Problems with different specifications for the same file

You'll experience problems with Make if you use different pathname specifications
for the same file (that is, pathnames with different degrees of volume and directory

qualification). Make uses the name strings exactly as encountered in dependency
lines, so different name strings will result in different entries. (This is done for the

sake of performance—no calls are made to the file system, except to inquire about
the date of targets that are supposed to be built) If there is more than one name
specification for the same file, each name results in a different Make target, and the

resulting dependency relations will be wrong.

Problems with default rules

An error message may appear saying that no rules were available to build something

that should have been covered by a default rule. This situation may result from any

one of the following problems:

168 Chapter 7: Building a Program

on"

i

a

=æ The default rule may not have matched against anything, and was thus not
applied; for example, the default rule

-p.o f .p

cannot be applied if the .p file does not exist either in the file system or in the
makefile dependency specification.

= There may be a typographical error in the filename, so that the default rule could
not be applied. You should be able to detect such errors by inspecting the output
of Make’s -s and -v options.

E There may be a typographical error in a default rule that was given in the makefile,
in which case you may not see any dependencies generated by the mule when you
use the -s option on the Make command line.

An example

This section lists the makefile used to build the Make tool itself. A series of
explanatory notes follows the listing.

TEFEPPERHERRSEEE THEE Variables ##S4Eds 9450442444 44497

Using Make 169

ToolDir = {Boot}ToolUnits: #SEE NOTE (1)

MakeUses = {ToolDir}MacInterfaces,.p.o #SEE NOTE (2)d

{ToolDir}MemMgr.p.o

{ToolDir}SymMgxr.p.o

{ToolDir)Utilities.p.o

{ToolDir}IOInterfaces.p.o

{ToolDir}Cursorctl.p.o

{ToolDir}ErrMgr.p.o

{PInterfaces})IntEnv.p

{PIinterfaces}MemTypes.p

{PIinterfaces}QuickDraw.p

{Pinterfaces}OSIntf.p

MakeObjs = Make.p.o

{ToolDir)Stubs.a.o

{ToolDir}CallProc.a.o

{ToolDir}Utilities.p.o

{ToolDir}Utilities.a.o

{ToolDir }IOInterfaces.p.o

{fToolDir}IOInterfaces.a.o

{ToolDir}MemMgr.p.o

{ToolDir}MemMgr.a.o

{ToolDir}SymMgr.p.o

{ToolDir}SymMgr.a.o

{ToolDir}CursorCtl.p.o

{ToolDir}CursorCtl.a.o

{ToolDir}ErrMgr.p.o

{ToolDir}MacInt.a.o

{ToolDir}MacInterfaces.p.o

Libs = {Libraries}Runtime.o

{PLibraries}PasLib.o ð

{Libraries} Interface.o

waoaqaqaq aq ay

aoqoaqwaaqndvaqqaqaqaqgdadqda

LinkOpts = -w # no warnings (duplicates due to Stubs.a.o)

#SEE NOTE (3)

SourceFiles = Make.p a

DefaultRules a

Makefile

feeHteeHeFHE Default Rule Customizations ####F hee se ee

POptions = -i (Boot }ToolUnits: #SEE NOTE (4)

SHHERRSHEREER EEE Dependency Rules ##Fe FFF ests eh tH HF

MakeX ff {MakeObjs} {Libs} #SEE NOTE (5)

Link {LinkOpts} -p -b -o MakeX a

-t MPST -c "MPS " a

170 Chapter 7: Building a Program

{(MakeObjs} {Libs} 2LinkMsgs

Makex ff defaultRules
Duplicate -d defaultRules Makex -y

Makex Sf {(MakeObjs} {Libs} defaultRules
SetPile MakeX -m . -d . set last~mod and creator dates

Make.p.o ff {MakeUses} #SEE NOTE (6) Delete MakeLoad -i #delete Make's Load/Dump file if out-of-date

Make.p.o ff Make.p
Save Make.p 2Dev:Null [| Set Status 0 #save source before compile if chanced

Make.p.o Ff {MakeUses} will be augmented by default rules
{ToolDir}MacInterfaces.p.o f (PInterfaces}MemTypes.p #SEE NOTE (7)d9

{PInterfaces}QuickDraw.p ð
{PinterfacesjOSIntf.p a
{PInterfaces}ToolIntf.p ð
{PInterfaces}PäsLibIntf.p

{ToolDir}MemMgr.p.o f {ToolDir}Utilities.p.o ð
{ToolDir}MacInterfaces.p.o ð
{PInterfaces}MemTypes.p

iToolDir}SymMgr.p.o f {ToolDir}MemMgr.p.o e]
{PInterfaces}MemTypes.p

iToolDir}Utilities.p.o f {PInterfaces }MemTypes.p

iToolDir)IOInterfaces.p.o f {ToolDir)Utilities.p.o ð
- : {ToolDir}MacInterfaces.p.o 2

(PInterfaces}MemTypes.p

Backur f
#SEE NOTE (8)

Dupiicate -y = -MakeSrc: #backup to Sony

Restore $

Duplicate -y MakeSrce:= ; #restore from Sony

Listings f {SourceFiles} #SEE NOTE (9)
Print -h -r -is .85 -s 8 -b -hf helvetica. ~-hs. 12 {NewerDeps}
Echo "Last listings made `‘Date`" >Listings

Notes on Make’s makefile

(1) The exported Shell variable {Boot}, used in the definition of {ToolDir}, is
automatically defined by Make when invoked.

Using Make 171

(2)

(3)

(4)

(5)

(6)

(7)

172

Several variables—{MakeUses}, {MakeObjs}, {Libs}, and (SourceFiles}—are used

for lists of filenames. This is a convenience because the lists are used in several

places later in the makefile; it also helps to reduce errors.

The {LinkOpts} variable is used to specify Linker options (and is used only once).
This usage is handy because the definition in the makefile functions as a default
that can be overridden from the command line with the -d option, as in

Make -d LinkOpts='-w -1 >Map’

The {POptions} definition gives a value to one of the variables used in the default
rules, customizing it for this particular makefile.

The three sets of ff rules for MakeX handle (a) the Make link, (b) the copying of
the default niles io Make’s data fork, and (c) the setting of the creation and
modification dates. The link will take place only if the Make objects or libraries

change. The default rules will be copied only if the rules have changed. And the
setting of the dates will take place if either of the first two rules was activated.
(Note that the third rule has the union of the dependency relations of the first

two.)

The three sets of ff rules for Make.p.o control the compilation of the main
source for Make, with some interesting side effects. The Make source uses the

Pascal Compiler's $LOAD option, which creates a symbol table for the USES that
can be loaded much faster than the USES are normally processed. The first of the
Ff rules is used to delete this load file (MakelLoad) if it has been invalidated by a
change in the USES files. This rule is. interesting in that it deletes rather than
builds something. The second of the ff rules saves the Make source before it is
compiled, only if the source file has changed. The last of the ff rules does the
actual compile. Note that this last rule has no explicit build commands, so it will
be augmented by the built-in default rules, which will add 2 dependency relation
(on the source file Make.p), and will supply the actual build commands for the

compile.

The dependency rules for Macinterfaces, MemMgr, SymMgr, Utilities, and

IOInterfaces describe dependencies between various utility units used by Make.
Several dependencies on library interface files are given. Dependencies among
the utility units themselves are described by indicating a dependency on the
object files of the lower-level (predecessor) units. These dependencies could
have been expressed as dependencies on the source files of the lower-level units
(because it is the source files that are read in a USES list). However, expressing

these dependencies on the object files has the nice property of ensuring that the
lower-level units have been successfully compiled before the higher-level units

are built.

Chapter 7: Building a Program

i

(8) The Backup, Restore, and Listings targets are additional roots (top-level targets)
in Make’s makefile, and thus represent other things that can be built besides Make
itself. (The Make program is represented by the MakeX target—MakeX standing
for experimental version of Make.) Note that the Backup and Restore targets do
not actually get built by their build rules; thus they are “artificial targets” and will
always generate build commands if they are specified on the Make command
line. Note also that they do not have any dependency relations.

(9) The build rules for the Listings target demonstrates the use of the {NewerDeps} variable. The prerequisite of Listings is a list of the Make source files. The first
build command prints the {NewerDeps} files. {NewerDeps} contains the names
of the prerequisites that are newer than the target, that is, the source files that
have changed since the Echo command last wrote the date into the Listings file.
The last line of the build rules simply writes the current date into a file called
Listings, which is the name of our target—this action results in a file that
remembers when listings were last made. (The fact that che date is written into the
file is unnecessary but convenient; the Echo itself is enough to change the file's
last-modified date.)

Note: There are several implicit builds that will be generated as needed by the default rules. For example, the {MakeObjs} variable includes several assembly-language object files. Because {MakeObjs} appears as a prerequisite of the link step, these
assemblies will be generated, if necessary, before the link.

a

More about linking
This section supplements the information given under the description of the Link
command in Chapter 9 and earlier. in this chapter under “Linking.” This section may be of interest after you’re familiar with the major MPW tools and are ready to
optimize your programs or build procedures.

. . 3

Linker functions

After a source file has been assembled or compiled into an object file, it contains
s Object code (relocatable machine language).
a Symbolic (named) references to all identifiers whose locations were not known at

compile time. (These include references to routines from separate compilations
and libraries, and references to global variables.)

The Linker performs the following functions:
a Sorts code and data modules into segments, by segment name. (Within a

segment, modules are placed in the order in which they occur in the input files.)
The -sg and -sn options allow you to change segmentation at link time.

More About Linking 173

Note: A module is a contiguous region of memory that contains code or static

data. A module is the smallest unit of memory that is included or removed by the

Linker. A segment is a named collection of modules.

= Omits unused (“dead”) code and data modules from the output file. (These

modules can be listed with the Linker’s -uf option, and deleted from libraries. with

the Lib command’s -df option.)

a Provides (together with the Segment Loader) a jump table architecture that

supports relocation of code and data at run time. (See the “Segment Loader”

chapter of Inside Macintosh for more information about the jump table.)

= Constructs jump-table entries only when needed, that is, only when a symbol is

referenced across segments. This means the jump table will be minimum size.

m Edits instructions to use the most efficient addressing mode. A5-relative Gump

table) addressing is used across segments, and PC-relative addressing is used

within a segment

w Provides (with the data initialization interpreter) support for relocation of data

references at run time. (The data initialization interpreter is the module
_DATAINIT in the libraries Runtime.o and CRuntime.o.)

a Generates a cross-reference listing of link-time (object-level) names Cx option).

m Generates a location map for debugging or performance analysis (-1 option).

The Linker copies linked code segments into code resources in the resource fork of

the output file. By default, these resources are given the same names as the

corresponding segment names.

* Note: If Linker errors or a user interrupt cause the output file to be invalid, then

the Linker sets the file’s modification date to. “zero” Jan. 1, 1904, 12:00 a.m.).

This action guarantees that the Make command will recognize that the file needs

to be relinked, and that the MPW Shell will not run the file.

Segmentation

Segmenting a program makes it possible for unused parts of a program to be

unloaded and purged from memory, thus freeing up memory space. You specify the

beginning of a segment by placing a directive in your program’s source file—see the

appropriate MPW language reference manual for information. Each segment is

linked into a code resource.

174 Chapter 7: Building a Program

% Note: For a desk accessory or driver, the code must be in a single segment, and
no jump table is constructed. Segmentation applies only to applications and
MPW tools.

The Linker sorts object code into load segments by name, allowing you to organize
your source code for clarity and understanding. You can specify the same segment
name more than once—the Linker collects code fora given segment name from all of
the Linker input files and places it into a single segment in the output file.
a O
Caution s

Segment names are case sensitive. For example, “Segi” and “SEG1” are not
equivalent names. If you arer” t sure about the cases used, you can use the
DumpOb| command with the -n (names) option.
ee
By default, resources created by the Linker are given resource names identical to the
corresponding segment names. Link provides options for combining and renaming
segments at link time (-sg and -sn). If you don’t specify a segment name before the
first routine in your file, the main segment name (“Main”) is assumed there.
Normally, you should give the main segment the name Main.

By default, segments are limited to 32760 bytes. This limit ensures compatibility with
all versions of the Macintosh ROM. Larger segments are allowed with the Linker’s -ss
option.

* Note: Object code is placed in a segment in the order that it’s encountered in
the input file. For segments larger than 32K, the order is important because PC-
relative offsets are limited to 32K by 68000 instructions.

For more information about segmentation, see the “Segment Loader” chapter of
inside Macintosh.

Segments with special treatment

When linking a main program, the Linker creates two segments that don’t appear in
the input object files:

m The jump table (CODE' resource, ID=0), which is unnamed.
= The global data area (no resource), which is named YGlobalData and appears

only in the link map file (described below). You can't change the name
%GlobalData at link ime. .

There are also two segments that have Special conventions:

æ The segment that contains the main program entry point (CODE' resource,
1D=1), usually named Main.

More About Linking 175

= A segment named %ASInit, which contains the initial values for the global data

area and code that moves these initial values to the global data area. Applications

should unload this segment to avoid memory fragmentation. This can be done by

calling UnloadSeg with the address of entry point _DATAINIT as its parameter;

for example,

UnloadSeg (& DATAINIT) ;

In C and Pascal, this call should be the first statement in the application. in

assembly language the call to UnloadSeg should foliow the call to _Datalnit.

a aaa aa

Setting resource attributes

Resources have attributes that control when and how they are loaded. The default

resource attribute values set by the Linker are shown in this table:

‘CODE’ resource Resource attributes

hex decimal

0 QumpTable) $20 32 resPurgeable

1 ("Main") $34 52 resPurgeable+resLocked+resPreLoad

others $20 32 resPurgeable

% Note: For linking MPW tools (programs with output file type MPST and output

file creator 'MPS °), all segments default to resPurgeable. Make sure that you do

not set the resLocked bit for a tool.

The Linker option -ra sets the resource attributes. Some useful resource attribute

values are

$20 32 resPurgeable

$10 16 resLocked

$08 8 resProtected

$04 4 resPreLoad

For more information about resource attributes, see the “Resource Manager” chapter

of Inside Macintosh.

The Linker also sets the resChanged attribute (when a changed resource is in

memory, and needs to be updated in the file). The Linker does not check or enforce

settings for the other resource attribute bits, with one exception: The Linker does not

support the “system heap” attribute,

$40 64 resSysHeap (for drivers, and so on)

and forces it to zero.

176 Chapter 7: Building a Program

% Note: If you need the resSysHeap bit to be set, you’ll have to process the file
after the link is completed, using either Rez or ResEdit. For example, to set this
bit for a 'DRVR' resource with ID=14 and the name “.printer”, you could use the
following command in a Rez input file:

include "Link.Out” 'DRVR' (14) as 'DRVR' (14,".printer", sysheap) ;

Controlling the numbering of code resources

Normally, you don’t need to worry about which segments are given which resource
numbers. However, you may want to control the assignment of resource numbers to
optimize program load time, to implement a specialized code manager, or to match
the numbering produced by another linker.

The Linker creates and numbers code resources based on the order in which it
encounters the segment names in the command-line parameters and the input
object files.: If you can’t easily predict the order in which the names appear in the
object files, you may want to force the ordering with command-line options that
contain dummy segment-mapping directives. For example, the following sequence
of Linker options forces Main to come first, followed by Init, Body, and Term:

Link -sn dummyl=Main # must contain the main code module ð
or entry point ð

-sn tASInit=Init ð
-sn dummy3=Body ð
-sn dummy4=Term ð
etc.

The “old” segment names may be either “dummy” names (which don’t appear in the
object files) or actual mappings, such as the mapping of the %ASInit code into the
segment Init.

Resolving symbol definitions

This section describes how the Linker resolves references to symbols. For a more
detailed discussion of local and external symbols, see Appendix H, “Object File
Format.”

Symbols in object files are either local or external. A local module, entry point, or
segment can be referenced only from within the file where it is defined. An external
module, entry point, or segment can be referenced from different object files. An
entry point is a location (offset) within a module. (The module itself is treated as an
entry point with offset zero.) A reference is a location within one module that will
contain the address of another module or entry. i

More About Linking 177

Multiple extemal symbol definitions

If the object files contain more than one definition for an external symbol, the first

definition is used, and all references are treated as references to the first definition.

This lets you selectively override entry points in libraries so that you can substitute

new versions of code, When subsequent definitions are encountered, a warning is

generated.

Unresolved external symbois

Occasionally, you may find that an external symbol is unresolved because a

reference was generated with case sensitivity set one way, whereas the definition was

generated with different case rules. When this happens, you can avoid recompiling

by using the Linker option -ma (module alias). Whenever the Linker encounters an

unresolved symbol, it checks the list of module aliases in an attempt to resolve it

Linker location map

If you specify the Linker option -1, the Linker writes a location map to standard

output. The map is produced in location ordering, that is, sorted by segNum,

segOffset .

The format is divided into the following fields:

name segName segNum,segOffset {@/TOffset] [#] [E] | fileNum, defOffset |

For example,

seg Main 1

TEFROMSCRAP Main 1,422 2,12892

TETOSCRAP Main 1,444 2,12946

% BEGIN Main 1,46C 3,3398

% iNIT Main 1,46E 3,3420

ek.

size Main TCA

seg %GlobalData ©

#0001 &GlobalData 0,0 ł 3,2332

__PASHEAP &GlobalData 0,C¢ 3,2886

PASHEAP sGlobalData 0,30 E 3,2892

QUITKCRAW %GlobalData 0,FE E 4,4826

_SAGLbILs “%GlobalData 0,FE + 4,4854

etc.

size %GlobalData 26C

178 Chapter 7: Building a Program

seg %ASInic 3

_DATAINIT *ASInit 3,0

_DataInit SASInit 3,0 7 @32 E
#600 *ASInit 3,C8 $
_ASInit %A5Init 3,c8 E
size %ASInit C8

w /TOffet is a hex number giving the distance from the memory location pointed to
by register A5 to the jump-table entry of the symbol.

= The number sign (#) indicates a local symbol, that is, not necessarily a unique
name.

= The symbol “E” indicates an entry point in the immediately preceding module.

= FileNumand defOffset are hex numbers giving the file number and offset within
the file where the symbol is defined. They are included only if the -1f ‘option is also
specified.

Fields in the Linker listing are separated with one or more tabs. To align the output as
a table, set the output file’s tab setting to 10—this gives 20 characters for the name
field, and 10 characters for the other fields.

The map of static global variables is presented as a data segment named
%GlobalData. The offsets in this segment are positive—the zero byte is furthest below
A5, and the highest-offset byte is the byte immediately below AS. In order to
translate these positive offsets into negative offsets from A5 (as shown by the
debugger), you neëd to subtract the size of %GlobalData from the offset.

No map information is provided for the data initialization descriptors, which are
appended to segment %ASInit.

Optimizing your links

Because of the complexity of the Linker’s functions, the Link step is often the longest
single step during incremental rebuilding of your program. The following steps can
substantially speed up the Linker’s performance:

= Use a RAM cache. The Linker must open and close many object files (particularly
with the -bf option). Experience has shown that large links run up to four times
faster when you use a RAM cache of 64K or more. (Use the Control Panel desk
accessory to check your RAM cache settings—if you change the setting, you must
restart the MPW Shell before the new setting takes effect.) Don’t use the RAM
cache on machines with only 512K of memory.

a Use the Lib utility to combine input files. You can use the Lib command to reduce
the number of input files so that the -bf option is not needed. This can give a
10-15% improvement in link speed (and even more on a Macintosh XL with many
files). See “Library Construction” later in this chapter.

4,6338

4,6558

4,6574

4,6586

More About Linking 179

a Eliminate unneeded files, You can eliminate unneeded input to the Linker by
heeding the warnings “File not needed for link,” and deleting the files that are so

identified. This means customizing your link lists, rather than relying on a generic

makefile for linking.

ws Eliminate unneeded references. You can also eliminate unneeded input by using
Lib to remove unreferenced modules. Experience has shown that producing a
specialized library file can increase Linker speed by as much as 40%. See “Library

Construction” below for information.

Library construction

The Lib tool enables library construction by allowing you to combine object code

from different files and languages into a single object file. For example, you can

combine assembly-language code with C or Pascal. The Lib tool was used for this

purpose in constructing the libraries distributed with MPW.

The Lib tool and its options are described in Chapter 9. This section explains some
aspects of using Lib.

Lib reorganizes the input files, placing the combined library file in the data fork of
the output library file. By default, the library output file is given type ‘OBJ ' and
creator 'MPS '. Lib’s output is logically equivalent to the concatenation of the input
files, except for its optional renaming, resegmentation, and deletion operations,
and the possibility of overriding an external name (as in Link). Lib doesn’t combine
modules into larger modules, nor does it resolve cross-module references: This

guarantees that the output of a link using the output of Lib is the same as a link using
the “raw” files produced by the Compilers and Assembler.

Object files that have been processed with Lib result in significantly faster links than

the “raw” object files produced by the Compilers and Assembler. The reasons for the
speed improvements are: ` a

z Code and Data modules are separated into different sections, and Code modules
are further sorted by segment name. These actions improve the performance of
Link, which must sort input modules into output code resources.

a All of the named symbols in the object file are gathered into a single Dictionary
area at the start of the file. This makes the output file smaller and simplifies the
processing needed by Link to resolve references.

m= When several object files are combined, multiple instances of a symbol definition
are replaced by a single definition. Again, this makes the output file smaller and

simplifies the processing by Link.

180 Chapter 7: Building a Program

Lib correctly handles file-relative scoping conventions, such as nested procedures in Pascal, static functions in C, or ENTRY names in Assembly; that is, it never confuses references to an external symbol with references to a local symbol of the same name, even if the two symbols are in two files combined with Lib.

Using Lib to build a specialized library
Each of the language libraries has files that you may or may not need to link with, depending on the functions your program calls. (See Appendix A, “Macintosh - Workshop Files.") Once you determine which files are needed for linking 2 particular program, you can greatly improve the performance of subsequent links by combining libraries into a si gle specialized library file. In building a specialized library, you can use Lib to l
E rename external modules (with the -mn option)
S change segmentation (with the -sg and -sn options)
a change the scope of a symbol from external to local (with the -dn option)
m delete unneeded modules (with the -dm option)
Lib’s renaming, resegmentation, and deletion operations give you detailed control over external names, the contents of library files, and the segmentation of object code. To use these features, you may need to review some of the material in Appendix H, “Object File Format,” in order to understand how modules and entry points are represented in object files. The DumpObj command is also useful in exploring the contents and structure of the library files provided with MPW.

Removing unreterenced modules

You can eliminate unneeded input to Link by using Lib to remove unreferenced modules. You can determine the number of unreferenced modules from the Linker’s progress information. (Use the -P option.) The Linker reports the total number of symbols read, as well as the number of active symbols (that is, the symbols in the output), and the number of visible symbols (that is, the symbols requiring jump- table entries). For example,

155 active and 54 visible entries of 714 read.
The difference between the total read and the number of active symbols is the number of unreferenced (and unneeded) symbols. Most of these unreferenced symbols represent standard library functions which your particular program doesn’t require.

Unreferenced modules can be removed in three steps:
1. Use the Linker’s -uf option to produce a file containing the unreferenced names.

Library construction 18}

2. Use the -uf file produced by Link as the input to Lib, using the Lib option -df to
produce a specialized library that contains only the modules that your program

requires.

3. Use the output of Lib as the input to subsequent links.

Guidelines for choosing files for a specialized library

The choice of which files to include in a specialized library file is largely dictated by

“stability” issues: Files that are unlikely to change for many builds are the best

candidates. “Stable” files include the library files provided by Apple for the ROM
interfaces and for language support. Files that are under development are best left as
single files.

Should you find it necessary to change one of the component files of a specialized
library, you don’t always need to immediately rebuild the specialized library. You

can simply include the newer version of the object file in the link list, before the
specialized library file that contains the older version. You'll get some waming
messages about duplicate symbols, but all references will be correctly moved to the
first definition encountered by the Linker. Later, after the file is stable again, you can

rebuild the library.

182 Chapter 7: Building a Prograrn

ATN

Chapter 8

Debugging With MacsBug

About MacsBug xx

Installing MacsBug xx

Theory of operation—a technical aside xx
‘The Boot Process x
Memory Usage x
MacsBug Exceptions x

Using MacsBug xx

The Macs8ug command language xx

Numbers x

Strings x

Symbols x

Expressions x

Commands x

General commands xx

Memory commands xx

Break commands xx

A-trap commands xx

Heap zone commands xx

Disassembier commands xx

MacsBug summary xx

This chapter describes the theory and operation of MacsBug, the Macintosh 68xxx

debugger. It also describes the syntax of commands accepted by MacsBug.

About MacsBug

MacsBug is a line-oriented, single-Macintosh debugger. It resides in RAM along with

the program being debugged. The capabilities of MacsBug include

s displaying and setting memory and registers

disassembling memory

stepping and tracing through both RAM and ROM

monitoring system traps

displaying and checking the system and application heaps

MacsBug obtains control when certain 68000 exceptions occur. You can then
examine memory, trace through the program, or set up break conditions and
execute the program until those conditions occur.

MacsBug works with the following hardware.configurations:

Âu 512K to 4 Mbytes of RAM

w 64K or 128K (Macintosh Plus) ROMs

a Motorola 68000 or 68020 processors

a Motorola 68881 floating-point coprocessor

“ Note: MacsBug does not work on the Macintosh XL. Macintosh XL users should
use MacsBug.XL, which is also provided.

Installing MacsBug

MacsBug is not a normal Macintosh application. Instead, MacsBug installs itself

once at boot time and remains active until shutdown. Installation occurs if the

following conditions are met:

1. MacsBug exists and is named *MacsBug’.

2. It is on a startup (bootable) disk.

182 Chapter 8: Debugging With MacsBug

3. It is in the current System Folder. (This is a requirement only on HFS volumes.)
The System Folder is, by definition, the folder that contains a system file named
System and a system -file named Finder.

MacsBug is shipped in the Debuggers folder; you must move it to the System Folder
to install it.

After a successful installation, the message “MacsBug installed” is displayed below
the “Welcome to Macintosh” message. The Startup application (normally the
Finder) is then launched as usual.

Once MacsBug is installed, the only way to remove it is to reboot. To prevent the
installation of MacsBug during a boot, hold the mouse button down while booting.
To permanently override the installation of MacsBug, simply rename it or remove it from the disk.

* Using HFS with the 64K ROM: If you have MacsBug on an HD-20 (HFS) Startup
disk on a machine with the original 64K ROM, there is a seeming conflict with the
above mouse-down command, because holding the mouse button down at boot
also forces the Macintosh to boot from the floppy disk rather than switch-
launching to. the HD-20. However, a skillful mouser can accomplish either
command simply by knowing that MacsBug is installed first, right after the.
“Welcome to Macintosh" hello message, and that the HFS code looks for a
mouse-down only after the “MacsBug installed” message. -

2

Theory of operation—a technical aside
This section provides background information about how MacsBug works. Some of
this information is important if you are interested in implementing your own
Macintosh debugger; most other readers can skip this. section.

The boot process

The state of the world when MacsBug is about to be loaded is fairly complete. The
interrupt system, Memory Manager, and ROM-based I/O drivers have already been inidalized by the ROM boot code.. The boot code initializes the Event Manager, the
Font Manager, the Resource Manager, and the file system. (Although the Toolbox is initialized at this point, MacsBug does not use the Toolbox.) The 'DSAT' table is
loaded in and the string “Welcome To Macintosh," contained therein, is displayed.

Next, the loading process of MacsBug takes place as follows: First the boot-blocks
code reserves some space (1024 bytes) for MacsBug's own global variables. Then this
code looks for the file specified in the boot blocks, as described above. If the file is
not found, then the global space is deallocated and the boot process continues
normally without installing a debugger.

Theory of operation—a technical aside 183

If MacsBug is found, the data fork (not the resource fork’) of the file is loaded onto
the current stack, which is located immediately below the main screen buffer in

memory.

œ Historical note. For reasons relating to the original Lisa Workshop, the first

block (512 bytes) of the MacsBug data fork is stripped off during this loading
process.

The boot code then JSRs to MacsBug itself. MacsBug begins its installation process by

checking to see if the mouse button is down. If it is, MacsBug aborts the installation

and lets the boot process continue without installing itself. If the button is not down,
MacsBug determines which kind of machine and microprocessor it is running on,
and configures itself accordingly.

At the successful compietion of the installation, the message “MacsBug installed” is
posted below the “Welcome To Macintosh” screen. The boot process then continues
by loading ‘INIT’ resources from the System file.

> Technical note. The boot code looks for 'INIT resources 0-31 and JSRs to them.
These 'INIT' resources are used to set up the keyboard maps C'INIT's 0 and 1),
install patches (of type 'PTCH") to ROM code, and so on. 'INIT 31 extends the
system further by looking for any files of type INIT in the System Folder. This
facility allows you to install your own startup code without changing the System
file.

Finally, the startup application is launched. The startup application is typically the
Finder, but can be set to any other application via the Finder's “Set Startup” menu
item.

Memory usage

During installation, MacsBug obtains further memory from below the main screen
buffer for use as its own screen memory. (MacsBug obtains memory from the same
general area in RAM as do RAM disks and caching utilities, based on the location of

BufPtr, a Macintosh global variable.) MacsBug offers a full screen display with 40
lines saved. This display uses about 20K of memory.

The total RAM requirement of MacsBug is approximately as follows:

Global space 1K
Screen space 20K

Code space 24K

TOTAL: 45K

MacsBug may not work with some memory-intensive applications on a

Macintosh 512K. For example, using MacsBug and the MPW Pascal Compiler on a

Macintosh 512K severely limits the size of programs that may be compiled. Two

solutions are possible:

184 Chapter 8: Debugging With MacsBug

LS,

co

1. Remove MacsBug to free up about 45K of RAM.

2. Add additional RAM via the Macintosh Plus Logic Board Upgrade or a compatible
third-party hardware upgrade to 1 MB or more of RAM.

MacsBug exceptions

When installed, MacsBug puts pointers to itself in many of the hardware exception
vectors in addresses $0000 0000 through $0000 OOFF. It then remains dormant until
one of “its” exceptions occurs. The following is the list of exceptions to which
MacsBug responds; each is numbered one greater than the corresponding
Macintosh System Error number.

Exception # Assignment

2 Bus Error (rarely seen on the Macintosh)
3 Address Error (not aligned to a word boundary)
4 Illegal Instruction (bit pattern not recognized)
5 Zero Divide
6 CHK Instruction (array index out of bounds)
7 TRAPV Instruction (overflow) i
9 Trace (used to single step in MacsBug)
10 Line 1010 Emulator (the A-trap handler for all Toolbox traps)
11 Line 1111 Emulator (68xxx coprocessor trap interface)
28 Level 4 interrupts
29 Level 5 Interrupts
30 Level 6 Interrupts
31 Levei 7 Interrupts
47 Trap $F Instruction (used for setting programmer breaks)

68000 exception processing is described in the Motorola 68000 Programmer's
Reference Manual.

Any time an A-Trap or other exception listed above occurs, MacsBug intercepts the
trap and can thus stop or display the current state of the machine. Single-stepping
through 68xxx instructions is possible because MacsBug can set the Trace bit in the
Status register of the microprocessor. MacsBug saves the ROM-based A-trap handler
address in the long word immediately preceding its own A-trap handler routine.
Thus, if you need to access the real ROM A-trap handler when MacsBug is installed,
you can look at the long word before the address of the current handler.

Using Macs8ug 185

ee

Using MacsBug

The simplest way to get into MacsBug is to generate an exception by pressing the

interrupt button. (The interrupt button is the rear button of the programmer's switch

on the Macintosh, or the minus key on the numeric keypad on the Macintosh XL.)

To see the application screen while the debugger is active, press the tilde/back quote

key (~/ `) in the upper-left corner of the keyboard. To restore the debugger’s display,

press any character key. Repeated presses toggle between the two screens, allowing

easy viewing of both the actual code (MacsBug screen) and the results (main screen).

The best way to enter the debugger programmatically is to set a breakpoint in your

program by using the system trap called Debugger at the point where you want

MacsBug to get control. There are two ways to use this trap. Calling trap $A9FF drops

into MacsBug and displays the message “USERBRK”. It then does a normal

exception entry into MacsBug (unless you have toggled the DX command—see

“Break Commands” below). ,

If you want to display custom debugging information, declare and cali the trap with

bit 10 set ($ABFF).. When this latter trap is encountered, MacsBug assumes that the

top of the user's stack has a pointer to a Pascal string. It prints out the string, displays

the message “USERBRK,” and: does a normal exception entry into MacsBug. As

$ABFF is a procedure call, MacsBug takes care of popping the string pointer off the

stack.

Here is a summary of how to declare and use this trap on a per language basis.

Assembly language:

Declaration:

_Debugger OPWORD SASFF ; predefined in the file ToolTraps.a

_DebugStr OPWORD SABFF ; not predefined - define yourself

Example calls:

a) _Debugger ; enters MacsBug and displays USERBRK

b) STRING PASCAL ; Asm directive to make sure to push a

Fi Pascal string

PEA #'Entered main loop' ; push address of string on stack

_DebugStr ; enters MacsBug and displays message

Pascal:

Declaration:

PROCEDURE Debugger; INLINE SA9SFF;

PROCEDURE DebugStr(str: str255); INLINE SABFF;

Example calls:

186 Chapter 8: Debugging With MacsBug

aoe

a) Debugger; {enters MacsBug and displays USERBRK}
b} DebugStr('Entered main loop'}; {Enters MacsBug and Displays message}

MPW C:

Declaration:

pascal void Debugger() extern OxAQFF;
Pascal void DebugStr(aString) Str255 aString; extern OxABFF;

Example calls:

a) Debugger (); ; /*enters MacsBug and displays USERBRK*/

b) DebugStr {c2pstr ("Entered main loop")); /*enters MacsBug, displays message*/
When MacsBug gets control, it disassembles the instruction indicated by the Program counter and displays the contents of the registers. If the exception was
caused by a $A9FF or $ABFF instruction, MacsBug displays the message
“USERBRK”, advances the PC to the next instruction, and then disassembles the instruction and displays the registers. It then displays the greater-than symbol (>) as a prompt, indicating that it is ready to accept a command.

% Note: There are two other ways to enter MacsBug: by using 'FKEY' and ‘INIT’ resources, With ResEdit, a skilled user can create a custom resource of either type whose sole function is described by two simple 68000 instructions:
SASFF $4E75 (Debugger and RTS; that is, the sequence to enter MacsBug).
a a a
Warning

Another way to generate an exception that was popular In the past was to
add a line such as

DC.W SFECE * generate a line 1111 exception
at the point in your program: where you wanted MacsBug to get control. (Any value SFOOO through SFFFF could have been used.) This method should not be used any more, as these instructions have been reserved by Motorola for use In their coprocessor interface for the 68020 microprocessor. (For example. in the future these “exceptions”. could actually be MC 68881 floating-point ` instructions!)
ie a a a

The MacsBug command language
Commands consist of a one- or two-character command name followed by a list of zero Of more parameters (depending on the command). A return character repeats the last command entered, unless otherwise specified in the command description.

‘The MacsBug command language 187

Parameters can be numbers, text literals, symbols, or simple expressions. All

parameters can be entered as expressions. Parameters are represented by

descriptive words and abbreviations such as address, number, and expr.

MacsBug commands can be divided into five groups: memory, break, A-Trap, heap

zone, and disassembly commands. . i :

i

Numbers

As is fitting for a debugger, all numbers are hex unless otherwise specified. Decimal

numbers are preceded by a number sign (#). Hexadecimal numbers can optionally

be preceded by a dollar sign ($). Numbers can be signed (+ or -). A hex word (four:

hex characters) preceeded by a less-than symbol (<) is sign-extended to a long

word. ; ae

Here are some numbers in different formats—the formats shown are the same as

those displayed by the CV (Convert) command, described later in this chapter.

Number Unsigned hex Signed hex Decimal

$FF _ $000000FF - §000000FF #255

37 $00000037 $00000037 5

-FF $FFFFFFO1 | . . +$000000FF -#255 ̀

#100 $00000064 ~ $00000064 #100

+10 $00000010 $00000010 #16

#-32 $FFFFFFEO -$00000020 #-100

<FFFA $FFFFFFFA -$00000006 #-6

Se e ee a ee eee

Strings i

A text literal is a one- to four-character ASCH string bracketed by single quotes ('). If

a string is longer than four characters, only the first four characters are used. When

used by MacsBug, text literals are right justified in a long word. Here are some

examples:

String . Stored as

At * $00000041
‘Fred! $46726564
"1234! $31323334

eee
Symbols

The following symbols are generally used to represent the 68xxx registers:

188 Chapter 8: Debugging With MacsBug

RAO, RAI,...RA7 the contents of address registers AO through A7

RDO, RD2,...RD7 the contents of data registers DO through D7

PC the contents of the program counter

SR the contents of the status register

“ Note: In any expression where you want to use the value of one of the main
registers, use the R-ex form, as shown above. If you specify AO for example, it will
be interpreted as address AQ, a valid hex address, not as register AO.

In addition, the following symbols are used for frequently referenced locations:

a period (“dot”) gives the last address referenced
TP “thePort"—the address of the current QuickDraw port

Expressions

Expressions are formed by operators acting on numbers, text literals, and symbols.
The operators are

+ Addition (infix); assertion (prefix)

- Subtraction (infix); negation (prefix)

@ or* Indirection operator (two different prefix operators
with identical functionality)

Note: The indirection operator uses the long integer at the location
pointed to by the operand.

& Address operator (prefix)

< _Add sign-extended number (infix); sign extension (prefix)
Expressions are evaluated from left to fight. All operators are of equal precedence. There is no way to alter the order of evaluation. Here are some valid expressions:

RA7+4

3A700-@10C

TP+#24

-RAO+RAL1-'FRED '+@@4C50
RAS<FE34

(RAS<FE34 is the same as RAS+FFFFFE34—useful in looking at global variables.)

f)
SSS

General commands

General commands 189°

?

(Help). Displays a short list of MacsBug commands and their parameters.

DV

(Display Version). Displays the version, the date and time of creation, and

signature of MacsBug. For example,

MACSBUG 5.1B1 17-May-86. 00:05:10 <DKA>

RB

(Reboot). Reboots the system.

ES

(Exit to Shell). Invokes the trap ExitToShell, which causes the current shell to be

launched, (The “current shel!” is usually the Finder but can be changed by editing the

Finder field of the boot blocks.) The current shell must reside in the System Folder

and is logically distinct from the startup application.

% Technical note: ES may not work with applications that override important

system traps. This problem occurs because the application heap gets initialized

promptly upon calling the trap ExitToShell; the initialization usually trashes any

system patches that were located there. However, there is a hook called

LAZNotify, called by InitApplZone, that you can use to restore the world before

purging the otherwise necessary routines.

EA

(Exit to. Application). Relaunches the application. This is a faster method than

calling ES and relaunching from the Finder.

aoe eee

Memory commands

CV expr

(Convert). Displays expr as unsigned hexadecimal, signed hexadecimal, signed

decimal, text, and binary.

DM [address | number} |

(Display Memory). Displays number bytes of memory starting at address.

190 Chapter 8: Debugging With MacsBug

Number is rounded up to the nearest 16 bytes. If number is omitted, 16 bytes are
displayed. If address and. number are both omitted, the next 16 bytes are displayed.
The dot symbol (.)is set to the address of the beginning of the last block displayed.

If number is set to certain four-character strings, memory is symbolically displayed
as a data structure that begins at address. The strings and the data structures they

. represent are

"IOPB?' Input/Output Parameter Block for File I/O

'WIND* Window Record

'TERC'! TextEdit Record

(Refer to Inside Macintosh for a description of these data structures.)

You can usually terminate a DM command by pressing the Backspace key.

SM address expr...

(Set Memory). Places the specified values, expr..., into memory starting at address.
The size of each value depends on the “width” of each expression. The width of a
decimal or hexadecimal value is the smallest number of bytes that holds the specified
value (four-byte maximum). Text literals are from one to four bytes long; extra
characters are ignored. Indirect values are always four bytes long. The width of an
expression is equal to the width of the widest of its operands. The dot symbol (.) is
set to address.

DB [address |

(Display Byte). Displays a single byte of memory located at address. This
command automatically calls the convert routine as well, allowing you to see flags
easily. DB is useful for looking at the contents of memory-mapped IO registers.
(Using DM will read larger portions of memory; this can have undesired side effects
on the peripheral chips being examined.)

SB address | epr]

(Set Byte). Places the value of expr into the byte located at address. If no expr is
given, then it clears the byte to zero. Like DB, this command is useful for debugging
memory-mapped I/O registers.

Dn { expr]

(Data Register). Displays or sets data register If expr is omitted, the register is
displayed. Otherwise, the register is set to expr.

Memory commands 191

An [expr)

(Address Register). Displays or sets address register n. If expris omitted, the
register is displayed. Otherwise, the register is set to expr.

PC (epr]

(Program Counter). Displays or sets the program counter. If expr is omitted, the

program counter is displayed. Otherwise, the PC is set to expr.

SR f epr]

(Status Register). Displays or sets the status register. If expr is omitted, the status
register is displayed. Otherwise the status register is set to expr.

TD

Total Display). Displays all of the 68000 registers and the PC, and disassembles the
current instruction that is about to be executed upon stepping, tracing, or going.

RX

(Register Exchange). Toggles the display mode so that the registers are or are not

dumped during a trace command. The disassembly of the PC instruction is not
affected.

CS [address! laddress2)}

(Checksum). Checksums the bytes in the range address1 through address2 and
saves that value. The checksum is an exclusive OR of the bytes in the range specified.

If address2 is omitted, CS checksums 16 bytes, starting at address1. If address1 and
address2 are both omitted, it calculates the checksum for the last range specified,

saves that value, and compares it to the previous checksum for that range. If the
checksum hasn’t changed, CS prints CHKSUM T; otherwise it prints CHKSUM F.

192 Chapter 8: Debugging With MacsBug

> Note: For checksumming memory in conjunction with A-traps, see the AS
command. For checksumming after every 68xxx instruction, see the SS
command.

———_—_—_—>L_—_——_—__——L_—__—___S SE eee

Break commands

BR { address [count] j]

(Break). Sets a breakpoint at address. Count specifies the number of times that the
breakpoint should be executed before stopping the program. If count is omitted, the
program is stopped the first time the breakpoint is hit. If address is omitted, all
breakpoints are displayed. You can set a maximum of 8 different breakpoints.

CL [address |

(Clear). Clears the breakpoint at address. If address is omitted, all breakpoints are
cleared.

‘G { address |

(Go). Executes instructions starting at address. If address is omitted, execution
begins at the address indicated by the program counter. Control does not return to
MacsBug until an exception occurs.

GT address

(Go Till). Sets a one-time breakpoint at address, then executes instructions Starting at
the address indicated by the program counter. This breakpoint is automatically
cleared after it is hit (GT address is equivalent to a BR address and G with the BR
being cleared after it is hit for the first time.)

T

(Trace). Traces through one instruction. Traps are treated as single instructions.

Break commands 193

If the next instruction to be executed is a JSR to a currently unloaded segment, you will

see the LoadSeg ($A9FO) trap instead of the JSR. Tracing through that instruction will
not work normally.. If you wish to trace through the LoadSeg trap, you need to set a
low-memory global at location $12D to a nonzero value. Do a SB 12D 1 to enable
tracing through the LoadSeg call. Next, Go (G). You will break at an RTS instruction.
Trace once (T) to see the absolute location that you are about to jump to. Trace again
and you will be at the first step of the routine that is now loaded into memory. To turn

off tracing through LoadSeg calls, simply execute SB 12D to clear the LoadSeg low-
memory flag.

S { number}

(Step). Steps through number instructions. If number is omitted, just one
instruction is executed. Traps are not considered to be single instructions.

SS address! | address2]

(Step Spy). Calculates a checksum for the specified memory range, then does a Go;

it then checks the checksum before each 68xxx instruction is executed, and breaks

into MacsBug if the checksum does not match. If address2 is omitted, SS checksums

the long word at address1. This feature is turned off by entering MacsBug via the
programmer's switch or by SS terminating when the checksum has changed.

Step Spy is very slow. Step Spy is nevertheless useful for detecting what routines are
stepping on a specific place in memory. If checking memory at every A-trap is
sufficient for your needs, use the AS command, described below. (The slow motion

capability of SS, however, can be useful in its own right to examine how the Finder
zooms windows, for example. Think of it as a tool to study graphics algorithms.)

ST address

(Step Till). Steps through instructions until address is encountered. Unlike Go Till,
this command does not set a breakpoint. Thus it can be used to step through, and
stop in, ROM. è

MR [offset]

(Magic Retum). When debugging, you generally trace through a program one
instruction at a time. MR lets you trace through to the end of a routine instead. When

you use MR, it replaces the return address that is offset bytes down in the stack with
the magic address within MacsBug; then it does a Go (described above). The RTS

that would have used that address returns to MacsBug instead of to the caller.
MacsBug restores the original return address, and then executes the RTS as if called
by the Trace command. The prompt is then displayed, ready to trace the instruction

after the RTS.

194 Chapter 8: Debugging With MacsBug

MR functions according to this formula: l

IF offet >= A6 THEN magic = offset + 4 ELSE magic = A7 + offset

The default offset is 0. This allows you to type MR RA6 when in nested subroutine
calls. The usual way to use this routine isto trace until just after a JSR (retum address 0
bytes down in the stack), and then do an MR. The rest of the routine is executed, and
control returns to MacsBug. This command isn’t repeated when you press Return: a
Trace command is executed instead.

DX

(Debugger Exchange). Normally, if either the $A9FF or the $ABFF A-trap (two
forms of the Debugger trap) is executed, Program execution halts and the debugger is
activated. DX allows you to control whether or not program execution halts. Note
that the $ABFF trap will still print a string; thus with debugger entry disabled, an
effect similar to that of the AT command occurs—that is, the Macintosh screen
alternates between the debugger and the Program. The default is to stop at Debugger
traps.

a

A-trap commands
The A-Trap commands are used to monitor £1010 emulator” traps, used to call the
Macintosh ROM. These commands take up to six parameters (trapl, trap2, address1,
address2, D1, and D2). These parameters indicate which traps and other conditions
should be monitored:

2 Trapi and trap2 specify the range of the traps. If only trap] is specified, the
command is invoked for trap1. If trap1 and trap2 are specified, the command is
invoked for all traps in the range trap1 through trap2. The defaults are $A000 and
SAAOO. :

$A000 ~ $AOFF . Operating system traps

$A800 - SAOFF - Toolbox traps

0 ~ $6F Shortcut expressions for OS traps

$70 and greater Interpreted as Toolbox traps
m Address] and address2 specify a range of memory addresses within which traps

should be monitored. The defaults are 0 and $FFFFFFFF.
@ Diand D2 specify the values of data register 0 within which traps should be

monitored. They are treated as unsigned numbers. The defaults are 0 and
SFFFFFFFF.

Thus, if no parameters are given, all traps are monitored.

A-ftap commands 195

A-trap commands allow two commands to take place simultaneously. The trick to

using the A-trap commands is to know that there are separate flags for tracing and

breaking, and that separate globals are used for storing the general trap range (GTR)

and the breaking trap range (BTR):

m Any A-trap command (AA, BA, AT, AB, AS, AH, AR) sets the tracing flag. In

addition, any command except AS can supply a trap range, which is always stored

in the GTR variable.

a Executing an AB or BA also sets the breaking flag. It also saves the trap range you
supplied in both the GTR and BTR variables.

Previously any A-trap command would clear all flags, but now only AX clears all
flags. If you. are a “casual” A-trap user, execute AX before executing any A-trap
commands in order to avoid undesired breaks. However, for the real MacsBug power
user, combined A-trap commands can be very useful.

An example of how you can use this is as follows. If you wish to view (trace) all of the
file system traps called from your application but also want to break at the next Open
call that you make, you would type (and in this orderi):

>BA Open
>AA 0 17 (shorthand for file system traps)

The AA command is entered second so that its range overwrites the GTR supplied by
the BA command. This way you can view (trace) the “wider” range of traps while

- breaking on the “smaller.”

BA [trap? [trap2 | address1 | address2 [D1 [D2]}]]}}

(Break in Appiication). Causes a break when the conditions specified by the

parameters are satisfied and the trap is being called from the application rather than
from the ROM. Address1 and address2 are automically set to ApplZone and BufPtr.
Therefore you can use this command to get back to the application when in ROM.
Simply type BA and Go. MacsBug will be entered at the next trap called by code
located in the application heap. To break on ROM calls as well (or traps called from

the system heap or elsewhere), use AB, described below.

AA [trap? [trap2 [| address! [address2 { D1 [D2 11111}

(Application A-trap Trace). Traces and displays each A-trap called from the
application heap without breaking if the conditions specified by the parameters are
satisfied. AA continues to display A-traps until you press the interrupt button. AA
allows you to monitor only the-traps that the application calls, and thus can be useful
for checking and measuring performance. To monitor all taps called, including
calls made from inside the ROM and traps called from the system heap, use the AT

command.

196 Chapter 8: Debugging With MacsBug

os

AB [trap! | trap2 | address! | address? {| D1 [D2 }}})]]
(A-trap Break). Causes a break when the conditions specified by the parameters are satisfied. AB without any parameters will stop at the very next trap executed anywhere by the Macintosh. To stop at the next trap called by the current application, use BA instead,

AT [trap! | trap2 | address1 | address? { D1 { D2]1}])}
(A-trap Trace). Traces and displays each A-trap without breaking, when the condition specified by the parameters is satisfied. AT continues to display all A- Traps until you press the interrupt button. If you wish to just see the traps called by the current application, use AA instead.

For example, to see all QuickDraw calls displayed, regardless of who calls them, you
could type

>AT A86C A8FB

AH [trap! | trap2 | address! | address? { D1 | D2 J)
(A-trap Heap Zone Check). Checks the heap zone for consistency just before executing each trap in the specified range. If an inconsistency is found, it displays the addresses of the two memory blocks in question.

AR [trap! | trap2 | address? | address? | D1 [D2}111]]
(A-trap Record). Whenever the parameter constraints are satisfied by an A-trap call, information about the call is recorded. The trap name, PC, AO, DO, and the lime are always saved. If the call was for an OS wap, 32 bytes pointed at by AO are recorded; otherwise 32 bytes pointed at by A7 (the stack pointer) are saved. To display the current saved information, type AR with no arguments.
This command is especially useful for tracking down crashes in the Macintosh ROM. For example, the command

>AR 0 1000 @2AA @114

records traps 0 through 1000 (all traps), from ApplZone ($2AA) through HeapEnd ($114), so it will record the last trap call made from anywhere in the application heap (the application's code).

A-trap commands 197

AS addressi | address2 |

(A-trap Spy). Calculates a checksum for the specified memory range, checks it

before each A-trap that is called, and breaks into MacsBug if the checksum does not

match. If address2 is not specified, AS checksums the long word at the given address.

Use SS if you want the range of memory to be checked before every 680cx instruction

rather than before every A-trap only. AS is tumed off by AX.

AX

(A-trap Clear). Clears all A-trap commands. «

Se

Heap zone commands

The heap zone commands act upon the current heap zone. When MacsBug is started

up, the current heap zone is the application heap zone. You can set the current heap

zone by using the HX command. Several commands cause MacsBug to scramble the

heap zone. When MacsBug scrambles the heap zone, it rearranges all the relocatable

blocks. This is useful for finding illegally used pointers to relocatable data structures.

HX [address }

(Heap Exchange). Sets the current heap to address. If no address is given, then HX

toggles the current heap zone between the system heap zone and the application

heap zone. In any case, HX displays the resulting current heap address.

HC

(Heap Check). Checks the consistency of the current heap zone, and displays the

addresses of inconsistent memory blocks as well as the address of the current heap.

HS [trapi trap2)

(Heap Scramble). Scrambles the heap zone by moving relocatable blocks when

certain traps in the specified range are encountered. HS always scrambles the heap

zone as a result of NewPtr, NewHandle, and ReallocHandle calis. It scrambles the

heap zone as a result of SetHandleSize and SetPtrSize if the new length is greater than

the current length. HS is fastest if you set trap/ to $18 and trap2 to $2D. The heap

zone is not scrambled as a result of traps other than those named above.

198 Chapter 8: Debugging With MacsBug

TN

PTPN

Pa

HD { mask}

(Heap Dump). Mask is optional. Whether or not mask is used, it displays each
block in the current heap zone in the following form:

blockAddr pe size [flag MP_location| {*] | refNum ID restype]
u blockAddr points to the start of the memory block.
u ‘ype is one of the following letters:

F free block
P pointer
H handie to a relocatable block

u size is the physical size of the block, including the contents, the header, and any
unused bytes at the end of the block.

a For handles (type H), flag is either blank if not purgeable or a P if purgeable. Then ` MP_location is displayed, which is the address of the master pointer to the
relocatable block.

B The asterisk (*)marks any locked object (nonrelocatable blocks and locked
relocatable blocks). à

R For resource file blocks, three additional fields are displayed: the resource’s
reference number, ID number, and resource type. If mask is omitted, the dump is
followed by a summary of the heap zone’s blocks: It begins with the six characters
“HLP PE”, which represent the six values that follow them. These values are

H number of relocatable blocks in the heap zone (handles)
L number of relocatable blocks that are locked
P number of purgeable blocks in the heap zone

(space) space, in bytes, occupied by purgeable blocks
P number of nonrelocatable blocks in the heap zone (pointers)
F total amount of free space in the heap zone

Here 1s a sample summary:

HLE PF 0084 0004 0002 0000079F 0017 000003B4
Note that block counts are single words, and values representing space in bytes are
iong word quantities. If mask is used, the summary line displays the block counts of
specific types of blocks. Possible values for mask are

TH! relocatable blocks (handles)
CBSE ni nonrelocatable blocks (pointers)
tp free blocks
‘RI resource blocks
'XXXX! resource blocks of type "KXXX'

If mask is used, the heap summary takes this form:
CNT ### — <# of blocks of mask type> <# bytes in those blocks>

Heap zone commands 199

You can prematurely terminate an HD command by pressing the Backspace key.

The dot address (.) is set to the last block of memory displayed by HD.

HT [mask]

(Heap Total). Displays just the summary line from a heap zone dump. Mask works

just as it does with the HD command (described above).

Sc

(Stack Crawl). Assumes that LINK / UNLK A6 has been religiously performed at the

beginning and end of each procedure or function. (The $D+ directive in Pascal, and

the -g and -ga options in C force these instructions to be performed.) The output

format is as follows:

SF @<stack frame locatior> <address of call to procedure>

For example,

SF @0D633C. ProcName+3A

means that the currently executing procedure or function has its local stack frame at

$D633C and was called from ProcName+$3A (which is not the return address). If

the program counter is not in the ROM, SC may not work properly.

a a I S e
ooo

Disassembler commands

SX

(Symbol Exchange). Determines whether or not symbols are displayed. By default,

symbols are turned on. SX affects any command that takes an address. Using

symbols allows you to IL or BR on a procedure or function name. For example,

>IL ProcName+58

disassembles code starting at 58 bytes (hex) into the procedure called ProcName,

and

>BR ProcName+58

sets a breakpoint at the same location. (This also works for GT, ST, DM, and so on.)

When searching for symbols, MacsBug searches the current heap (set by the HX

command). The heap is searched by walking through memory and looking for locked

blocks of memory. Then, within locked blocks, MacsBug first looks for a LINK A6

instruction followed by a matching UNLK A6 instruction. Then MacsBug looks for

either an RTS or a JMP (AO) instruction.

200 Chapter 8: Debugging With MacsBug

F

Immediately following one of these last two instructions should be an eight-character
symbol. This symbol must be exactly eight characters long; it should be padded with
blanks if it is less than eight characters. Some compilers set the high bit on the first
character of the symbol, but MacsBug clears this bit. In addition, if the high bit of the

- second character is set, MacsBug expects a 16-character name (used mainly for
method names in MacApp-generated code.) To see all of the symbols that are valid
at any given moment, use the SD command (described next).

Turning symbols off is helpful for two reasons. First, every symbol lookup traverses
the current heap, and therefore may degrade the speed of the disassembly.
Secondly, if you prefer always seeing a dump of code in hex rather than symbols
(useful when looking at ROM code, for example), turning off symbois will guarantee a
hex dump of your code. This hex dumip displays the main opcode word followed by
two extension words which may or may not apply to the particular instruction
disassembled.

SD [address}

(Symbol Dump). Displays a list of the procedure names that can be found in the
Current heap zone. The search criteria are based on looking in each block of memory
whose locked bit is set. In addition, a LINK A6 and its matching UNLK A6 must be
found, followed by either a JMP (AO) or an RTS. The eight-character debugging name
follows. Valid debug symbols must consist of ASCII characters in the range $20-$5F
(space-underscore), inclusive. This command optionally allows you to specify a i
starting location for the symbol dump.

DH number

(Disassembie Hex). Disassembles the hex byte, word, or long word input. Typing
just one byte allows you to see the general class of instructions, as number is left-
aligned in a long word padded to the right with zeros. (Typing DH 10, DH 20, and
DH 30, for example, shows by induction that these instruction groups are the
Move.B, Move.W, and Move.L classes, respectively.)

This command is useful as a poor man’s assembler. For example, if you wanted to use
the RESET instruction and could not remember what its opcode was, you could type
DH 4E71 as a first guess and DH would display NOP. Trying DH 4870 as a second
guess would reveal the actual RESET instruction.

ID | address}

(instruction Disassemble). Disassembles one line at address. If address is omitted,
the next logical location is disassembled. ID sets the dot symbol (.) to the address.

Disassembler commands 201

If the code has symbols compiled with it via the $D+ directive in Pascal or the -g

option in C, and symbols have been turned on with the SX command, each address

is automatically displayed as a routine name plus an offset.

IL [address [number) |

(instruction Ust). Disassembles number lines starting at address. If number is

omitted, a screenful of lines (typically 16) is disassembled. If both number and
address are omitted, a screenful of lines is disassembied starting at the next logical
location. This command sets the dot symbol (.) to the address.

If the code has symbols compiled with it via the $D+ option in Pascal or the -g option
in C, and symbols have been turned on with the SX command, each address is

automatically displayed as a routine name plus an offset

You can prematurely terminate an IL command by pressing the Backspace key.

F address count data { mask |

(Find). Searches count bytes from address, looking for data, after masking the
target with mask. As soon as a match is found, the address and value are displayed,
and the dot symbol (.) is set to that address. To search the next count bytes, simply
press Return. The size of the target is determined by the width of data; it is limited to

1, 2, or 4 bytes.

For example, to find a RESET instruction in a program loaded into a Macintosh Plus,
you could type

>F. CB00 EFFFF 4E70

where CBOO is the beginning of the application heap, EFFFF represents the length of

the application heap (roughly), and 4E70 is the RESET instruction.

WH epr

(Where). Takes an expression, which can be a symbolic name, and displays the
location of the first routine that it finds whose name matches the expression. ROM

symbol names are ten-character names, and RAM symbols are eight-character

names.

If expr is less than $AA00, this command displays the address corresponding to the

trap with that number. All of the following commented commands, for example,

give the same result:

>WH EXITTOSHELL ; full name
>WH A9F4 ; full trap word

>WH 1F4 ; shortcut

>WH 40F6D8 ; address of ExitToShell in the 128K ROM

202 Chapter 8: Debugging With MacsBug

Teme)

|

Namely,

Trap Word Address Name

AOF4 40F6D8 EXITTOSHELL

The shortcut method of inputting trap numbers interprets $0~$6F as OS traps, and all other traps as Toolbox traps.

If expris preceded by the address operator (&), then the expression is forced to be valuated as an address. This feature is useful for examining system patches whose addresses are often less than SAAO0, the default address boundary.
If expr is greater than or equal to $AA00 and less than RomBase, then the address is interpreted as a user routine in RAM, and 2 symbolic location will be displayed if possible.

If expr is in ROM then the trap whose code is closest to that address is displayed.
WH is useful for finding out where you were when an error occurred. If the address expression is in RAM and the WH function retums “PRGM AT $$$$* you can then use the command HD 'CODE' to list the code segments. Then, by comparing the locations of ‘CODE! Segments and the current PC, you can determine which segment you are in.

~ Ma
.

csBug summary

' General commands `
? (Help)
DV (Display Version) RB (Reboot) ES (Exit to Shell) EA

(Exit to Application)

Summary 203

Memory commands

CV epr (Convert)
DM [address [number]] (Display Memory)
SM address expr... (Set Memory)
DB [address | (Display Byte)
SB address { expr] ` (Set Byte)
Dn [expr} (Data Register)
An Í epr} (Address Register)
PC [epr] (Program Counter)
SR [expr} (Status Register)

TD (Total Display)
RX (Register Exchange)
CS { address! | address2)} (Checksum)

Break commands

BR [address [count] |) (Break)
CL [address | (Clear)

G [address) (Go)
GT address (Go Till)

T (Trace)

S [number] (Step)
SS addressi | address2 | (Step Spy)
ST address (Step Til)

MR [offset} (Magic Return)
(Debugger Exchange)

A-trap commands

204

{ trap1 | trap2 { addr1 | addr2 { D1 [D2 1}}))}
{ trapi | trap2 | addr1 | addr2 | D1 | D2 1)]}})
{ trapi {| trap2 | addr! | addr2 | D1 [D2 }))}})
[rapi [trap2 { addri { addr2 {| D1 | D2)}1}3})
[trapi [trap2 | addr1 { addr2 [| D1 [D213111)
[rapt (trap2 | addr1 | addr2 { D1 | D211111)
address! | address2 }

Chapter 8: Debugging With MacsBug

(Break in Application)
(Application A-Trap Trace)

(A-Trap Break)
(A-Trap Trace)
(A-Trap Heap Zone Check)
(A-Trap Record)
(A-Trap Spy)
(A-Trap Clear)

Heap zone commands
HX [address | (Heap Exchange)
HC (Heap Check)
HS [trap? trap2) (Heap Scramble) HD [mask} (Heap Dump) HT [mask} (Heap Total)
SC (Stack Crawl)

Disassembier commands
SX

(Symbol Exchange) SD [address | (Symbol Dump) DH number (Disassemble Hex) ID [address | Cinstruction Disassemble) IL [address { number} } Cnstruction List) F address count data [| mask } (Find) WH epr (Where)

Summary 205

a

Chapter 9

Command Reference

This chapter is 2 command dictionary that describes each of the Macintosh Workshop commands. Pay particular attention to the “Command Prototype” section, which describes the basic behavior
of all commands.

AddMenu

Adjust

Alert

Alias

Align

Asm

Beep

Begin...End

Break

Cc

Canon.

Catenate

Clear

Close

Compare

Confirm

Continue

Copy

Count

Cut

CvtObj

Date

Delete

DeleteMenu

DeRez

Directory

DumpCode

DumpObj

Duplicate

Command Prototype xx

Add menu item xx

Adjust lines xx

Display an alert box xx

Define or write command aliases xx

Align text to left margin xx |

68xxx Macro Assembler xx

Generate tones xx

Group commands xx

Break from For or Loop xx

C Compiler xx

Canonical spelling tool xx

Concatenate files xx

Clear the selection xx

Close a window xx

Compare text files xx

Display confirmation dialog xx

Continue with next iteration of For or Loop xx

Copy selection to Clipboard xx

Count lines and characters xx

Copy selection to Clipboard and delete it xx

Convert Lisa Workshop object files to MPW object files xx

Write the date andtime xx

Delete files and directories xx

Delete user-defined menus and items xx

Resource Decompiler xx

Set or write the default directory xx

Write formatted code resources xx

Write formatted object file xx

Duplicate files and directories xx

Command Reference 207

Echo Echo parameters xx

Eject Eject volumes xx

Entab Convert runs of spaces to tabs xx

Equal Compare files and directories xx

Erase Initialize volumes xx

Evaluate: Evaluate an expression xx

Execute Execute a command file in the current scope xx

Exit Exit from command file xx ,

Export Make variables available to programs xx

FileDiv Divide a file into several smaller files xx

Files List files and directories xx

Find Find and select a text pattern xx

Font Set font characteristics xx

For... Repeat commands once per parameter xx

Help Display summary information xx

If... Conditional command execution xx

Lib Combine object files into a library file xx

Link © Link an application, tool, or resource Xx

Loop...End Repeat command list until Break xx

Make Build up-to-date version of a program xx

MDSCvt Convert MDS Assembler source xx

Mount Mount volumes xx

Move Move files and directories xx

New Open anew window xx

NewFolder Create a directory xx

Open Open a window xx

Parameters Write parameters xx

Pascal Pascal Compiler xx

PasMat Pascal program formatter (*pretty-printer”) xx

PasRef Pascal cross-referencer xx

208 Chapter 9: Command Reference

Paste

Print

Rename

Replace

Request

Rez

RezDet

Save

Search

Set

SetFile

Shift

Tab

Target

TLACvt

Unalias

Unmount

Unset

Volumes

Windows

Replace selection with contents of the Clipboard xx

Print text files xx

Rename files and directories xx

Replace the selection xx

Request text from a dialog xx

Resource Compiler xx

The resource detective xx

Save windows xx

Search files for a panem xx

Define or write Shell variables xx

Set file attributes xx

Renumber command-file parameters xx

Set 2 window’s tab value xx

Make a window the target window xx

Convert Lisa TLA Assembler source xx

Remove aliases xx

Unmount volumes xx

Remove Shell variables xx

List mounted volumes xx

List windows xx

Command Reference 209

Se e
ee

Command prototype

The following command prototype illustrates the conventions that we’ve used to

describe MPW commands. Most commands behave roughly as specified below.

Syntax Command { option... I file... 1

Note: Filenames, command names, and options are not sensitive to case. The

syntax notation itself is described in the Preface to this manual. a

Description The first word of the command is the filename of the program to execute, or the name

of a predefined command. The subsequent words are passed as additional

parameters to the command (or recognized by the Shell in the case of 1/O

redirection).

Most commands recognize two distinct types of parameters: options and filenames.

Options begin with a minus sign (-) to distinguish them from filenames. Although the

syntax descriptions list the options first, options and files may appear in any order.

All of the options apply to the processing of all of the files, regardless of the ordering

of options and files.

For commands that read and write text files, you may specify a file, a window, or a

selection within a window, as follows:

name Named window or file.

§ The selection in the target window. (The target window is the second

window from the top.)

name§ The selection in the named window.

Input Standard input is often processed if no filenames are specified. s

Note: If a program is reading from standard input, you can press Command-Enter

(or Command-Shift-Return) to indicate EOF and terminate input. (See “Terminating

Input With Command-Enter” in Chapter 3).

Output Text processors usually write their output to standard output. The Assembler writes

listings to standard output. The Linker writes location maps to standard output.

210 Command prototype

Diagnostics

Status

Options

See also

Errors and warnings are written to diagnostic output. If no errors or warnings are
detected, most commands don’t write anything to diagnostic output. Assembler and
Compiler error messages have the format

message
File "fllename" ; Line lnenumber

This format makes it possible to select and execute the text after “###", because the
names “File” and “Line” have been defined as Shell commands “File” is defined in
the Startup file as an alias for the Target command, and “Line” is a short command
file that finds a line number.

Several tools write progress and summary information to diagnostic output if you
specify the -p option.

Status values are returned in the {Status} variable. A value of 0 indicates that no errors occurred; anything else usually indicates an error. Typical values are

0 "Command succeeded
1 Incorrect options or parameters
2 Command failed; invalid input

Options specify some variation from the default command behavior. Options begin
with a minus sign (-) to distinguish them from files and other parameters.
Options form single words in the command language. Some options require
additional parameters, which are separated from the option name with a blank. (An
Option's parameters also form a single word in the command language.) If more than one option parameter is required, the usual separators between them are commas
and equal signs—for example,

Asm -define &debug='on' -pagesize 84,110
For those options that do have additional parameters, the option parameters are
never optional.

Options may appear in any order. AÑ options are collected prior to processing files.

“Structure of a Command” in Chapter 3

Command prototype 211

Syntax

Description

———

AddMenu — add menu item

AddMenu [menuName | itemName | command...) |}

Associates a list of commands with the menu item temName, in the menu

menuName. If the menu menuName already exists, the new item is appended to the

bottom of that menu. If the menu menuName doesn't already exist, a new menu is

appended to the menu bar and the new item is appended to that menu. When the new

menu item is selected, its associated command list is executed just as though the

command text had been selected and executed in the active window.

Note: The command text that you specify for an AddMenu item is executed

twice-—once when you execute the AddMenu command itself, and again whenever

you subsequently select the new menu item. This means that you must be careful to

quote items so that they are processed at the proper time: See the “Examples” section

below.

You can also use AddMenu to display information for existing user-defined menus,

by omitting parameters:

a If command is not specified, the command list associated with itemName is

written to standard output.

e If itemName and command are both omitted, a list of all user-defined items for

menuName is written to standard output.

æ If no parameters are specified, a list of all user-defined items is written to standard

output.

(This output is in the form of AddMenu commands.)

You can define keyboard equivalents, character styles, and other features for your

new menu commands—itemName can contain any of the metacharacters that are

used with the AppendMenuC) procedure documented in the “Menu Manager”

chapter of Inside Macintosh:

/char Assign the keyboard equivalent Command-char.

tchar Place char to the left of the menu item.

An Item has an icon, where n is the icon number (see Inside

Macintosh).

C Item is disabled (dimmed).

<style Item has a special character style: style can be any of the following:

B bold

212

input

Output

Diagnostics

Status

Examples

italic

underline
outline
shadow

Be sure to quote menu items containing these special. characters. (See the “Examples” section below.)

Note: Semicolons (;) cannot be used within an ttemName.
Menu items can’t be appended to the Windows, Format, or Apple menus.

“oan

None.

If any of the optional parameters is omitted, a list of user-defined menu items and their associated commands is written to standard output.

Errors and warnings are written to diagnostic output.

AddMenu returns the following status values:

0 No errors

1 Syntax error
2 An item can’t be redefined
3 System error

AddMenu

Lists all user-defined menu items.

AddMenu. Extras "TimeStamp/P" ‘Echo `Date`'
Adds an “Extras” menu with a “TimeStamp” item, which writes the current time and date to the active window. This item has the Command-key equivalent Command-P.

AddMenu File 'Format<B' ‘Erase 1'
Adds a “Format” item to the File menu (see the Erase command), and makes the item bold.

AddMenu Find Top 'Find - "{Active}™!
Adds the menu item “Top”-to the Find menu, and defines it as the Find command enclosed in single quotes—this command places the insertion point at the beginning of the active window.

Add Menu 213

See also

214

Note: The following attempt to do the same thing will not work

AddMenu Find Top "Find « {Active}"

This command won't work because the {Active} variable. will be expanded when the

menu is added. (It should be expanded when the menu item is executed.) In the first

(correct) example, the single quotes defeat variable expansion when the AddMenu

command is executed; they are then stripped off before the item is actually added.

The double quotes remain, in case the pathname of the active window happens to

contain any special characters.

You may want to add some or all of the following commands to your UserStartup file:

AddMenu Find ‘*(-' i

AddMenu Find 'Top/6' 'Find © "{Active}"'

AddMenu Find 'Bottom/S' 'Find œ "{Active}"'

AddMenu Find 'Clear to Bottom/8' ‘Clear §:% "{Active}"'

These commands create several new items in the Find menu. The first is a disabled

separator that creates a new section at the bottom of the menu. The Top and Bottom

items position the insertion point at the top and bottom of the active window. Clear to

Bottom clears everything from the beginning of the current selection (or insertion

point) to the end of the active window. Ail three menu items have Command-key

equivalents.

DeleteMenu command

“Quoting Special Characters,” “How Commands Are Interpreted,” and “Defining

your own Menu Commands” in Chapter 3.

“Creating a Menu in Your Program” in the “Menu Manager” chapter of Inside

Macintosh

Add Menu

PS

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

Adjust — adjust lines

Adjust [-c count]. [-I spaces] selection { window |

Finds and selects the given selection, and shifts all lines within the selection to the
tight by one tab, without changing the indentation.

If a count is specified, count instances of selection are affected. The -l option lets you
move lines by any number of spaces to the left or right.

If you specify the window parameter, the command operates on window. It’s an
error to specify a window that doesn’t exist. If no window is specified, the command
operates on the target window (the second window from the top).

None.

None.

Errors are written to diagnostic output.

Adjust returns the following status values:

O At least one instance of the selection was found
1 Syntax error

2 Anything else

-c count Repeat the select-and-adjust operation count times.

-1 spaces Every line within the selection will be shifted spaces spaces to the
right. You can shift a selection left by specifying a negative value for
spaces.

Adjust -1 4 §

Shifts the lines containing the target selection to the right by four spaces.

Adjust -1 -8 /if/A:A/else/ -

Selects everything after the next “if” and before the following “else”, and shifts all
lines within the selection to the left by eight spaces.

Adjust 215

See also Align command

“Selections” in Chapter 4

216 Adjust

Syntax

Description

Input
oS

Output

Diagnostics

‘Status

Examples

TON

See also

Alert — display an alert box

Alert message

Displays an alert box containing the prompt message. The alert is displayed until its
OK bution is clicked. If the message consists of more than one word, or contains any
special characters, you'll need to quote it, as expunea in Chapter 3.

None.

None.

None.

The Alert command normally returns the value 0. The value 1 is returned if there were
any syntax errors,

Alert “Please enter next disk to be searched."

Displays the following alert box, and waits for the user to click "OK" before returnin g.

Piease enter next disk to be searched.

R

Confirm and Request commands

Alert 217

Syntax

Description

input

Output

Diagnostics

Status

Examples

218 Alias

EE
E

Alias — define or write command aliases

Alias [name { word...]]

Name becomes an alias for the list of words. Subsequently, when name is used as a

command name, word... will be substituted in its place.

If only name is specified, any alias definition associated with name is written to

standard output. If name and word are both omitted, a list of all aliases and their

values is written to standard output. (This output is in the form of Alias commands.)

Aliases are local to the command file in which they are defined. An initial list of

aliases is inherited from the enclosing command file. Inherited aliases may be

overridden locally. You can make an alias definition available to all command files

by placing the definition in the UserStartup file.

You can remove aliases with the Unalias command.

None.

When parameters are omitted, the Alias command writes aliases and their values to

standard output.

None.

A status value of 0 is always retumed.

Alias CD Directory

Creates an alias “CD” for the Directory command.

Alias Top 'Find *'

Creates an alias “Top” for the command “Find +” (which places the insertion point at

the beginning of a window). The command takes an optional window parameter, and

by default acts on the target window. The Top command could now be used as follows:

Top # find top of target window

~

See also

Top Sample.a # find top of window Sample.a

(equivalent to "Find « Sample.a")

The following example redefines an existing command:

Alias Save SaveMany

The built-in Save command does not allow you to save a list of windows. To override
the built-in Save command with your own version of the command, you could alias

Save to the command file SaveMany, which might contain the following:

SaveMany ~ Save a list of windows ####

+
+ SaveMany [{window..]

Unalias # It's very important to Unalias Save!

Set Exit 0

For window in ("Parameters"}

Save "{window}"

End

The Unalias command must be inchided—it removes the alias for Save, preventing

infinite recursion when Save is used later in the command file. To make this multi-

window save a permanent feature on your system, you could put the Alias command
in your UserStartup file, and put the SaveMany command file in the Tools directory.

Unalias command

“Command Aliases” in Chapter 3

Alias 219

Align — align text to left margin

Syntax — Align [-c count] selection | window)

Description All lines within each instance of the selection are positioned to the same distance

from the left margin as the first line in the selection.

If you specify the window parameter, the Align command will act on window. It’s an

error to specify a window that doesn’t exist. If no window is specified, the command

operates on the target window (the second window from the top).

Input None.

Output None.

Diagnostics Errors are written to diagnostic output.

Status Align retums the following status values:

0 At least one instance of the selection was found

1 Syntax error

2 Any other error

Options -c count Repeat the select-and-align operation count times.

Examples Align §

Same as the Align menu item; that is, aligns all lines in the default selection with the

first line of the selection.

Align /Begin/:/End/

Selects everything from the next “Begin” through the following “End”, and aligns all

lines within the selection to the same margin position as the line that contains the

“Begin”.

See also Adjust command

“Selections” in Chapter 4

220 Align

Syntax

Description

Input .

Output

Diagnostics

Status

Options

Asm — 68xxx Macro Assembler

Asm {option ...} (file...)

Assembles the specified assembly-language source files. One or more filenames may
be specified. If no filenames are specified, standard input is assembled and the file
“a.0” is created. By convention, assembly-language source file names end in the
suffix “.a”. Each file is assembled separately— assembling file name.a creates object
file name.a.o. The object file name can be changed with the -o option.

See the MPW Assembler Reference manual for details of the assembly language.

If no filenames are specified, standard input is assembled. (You can terminate input
by typing Command-Enter.) i

If either the -1 or -s option is specified, an assembler listing is generated. If standard
input is used for the source file, the listing is written to standard output. If the input is
taken from file name.a, the listing is written to name.a.lst. The listing file name can
be changed with the -lo option. :

Errors and wamings are written to diagnostic output. If the -p option is specified,
progress and summary information is also written to diagnostic output.

The following status values are returned to the Shell:

0 - No errors detected in any of the files assembled
1 Parameter or option errors

2 . Errors detected

3 Execution terminated

Except for the -case on option, options may appear in any order.

-addrsize size Set address displays in the listing to size digits (values 4 to 8 are
allowed). The default is 5 digits.

Asm 221

222 Asm

-blksize blocks Set the Assembler’s text file I/O buffer size to blocks’512 bytes.

Values 6 to 62 are allowed. Odd values are made even by reducing

the value by 1. The default value is 16 (8192 bytes) if the Assembler

determines it has the memory space for the I/O buffers, and 6 (3072

bytes) otherwise. This option permits optimization of I/O

performance (transfer rate for text file input, load/dump files, and

listing output) as a function of the disk device being used. Note that

increasing the blocks value reduces the amount of memory

available for other Assembler structures (such as symbol tabies).

-case on Distinguish between upper- and lowercase letters in non-macro

names (same as CASE ON). (Case is always ignored in macro

names.) If you intend to preserve the case of names declared by the

-define option, then the -case on option must precede the -define

option(s) in the command line.

-case objiect] Preserve the case of module, EXPORT, IMPORT, and ENTRY

names only in the generated object file. In all other respects, case

is ignored within the assembly, and the behavior is the same as the

preset CASE OFF situation.

-case off Ignore the case of letters. Ali identifiers are case insensitive. This is

the preset mode of the Assembler, but it may be used in the

command line to reverse the effect of one of the other -case modes.

-c{heck] Syntax check only. No object file is generated.

-dlefine] namd=valuel |, namd=valuel }...

Define the name as having the specified value. The value is a

decimal integer. If value is omitted, a value of 1 is assumed. This

option is equivalent to placing the directive

name EQU value

at the beginning of your source file. Note that in order to test

whether or not the name is defined, the & Type function should be

used. You can define more than one name by specifying multiple -d

options or muluiple namd=value parameters separated by

commas. For example,

Asm -d debugl, &debug='on'

PN

N

-dlefine] &namd=(valuel] [&namd=[valua] }...
Define the macro name as having the specified value. The value is a
decimal integer or a string constant. If the “*va/ue” is omitted, the
decimal value 1 is assumed. If only the value is omitted, the null

string is assumed. -define is equivalent to declaring the name as a
global arithmetic symbol (GBLA for an integer value) or global

character macro symbol (GBLC for a string value) and placing one
of the following directives at the beginning of the source file:

&name SETA value

&name SETC value

Note. that in order to test whether the name is defined, the &Type
function should be used. You can define more than one macro

name by specifying multiple -d options or multiple &namd=vaiue}
parameters separated by commas.

-elrrlog] Alename

-f

Write all errors and warnings to the error log file with the specified
filename (same as ERRLOG 'flename).

Suppress page ejects (same as PRINT NOPAGE).

-font fontnamd fonisize]

-h

Set. the listing font to fontname (for example, Courier), and the size
to fontsize, This option is meaningful only if the -s or the -I option is
used. The default listing font is Monaco 7. Note that listings will be
formatted correctly only if a monospaced font is used.

Suppress page headers (same as PRINT NOHDR).

-i pathname | pathname]...
Search for include and load files in the specified directories.
Multiple -i options may be specified. At most 15 directories wül be
searched. The search order is as follows:

1. The include or load filename is used as specified. If a fuil
pathname is given, then no other searching is applied.

If the file wasn't found, and the pathname used to specify the file
was a partial pathname (no colons in the name or a leading

colon), then the following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -i options, in the order listed. `

4. The directories specified in the Shell variable {Alncludes}.

Asm

-1

-lo iistingname

-0 objname

-pagesize / [uj

Generate full listing. If file name.a is assembled, the listing is

written to mame.a.lst.

Pathname for the listing file and directory for the listing scratch file.

If stingname ends with a colon G), it indicates a directory for the

listing file, whose name is then formed by the normal rules (that is,
inputFilename.a.\st). If listingname does not end with a colon, the

listing file is written to the file Mstingname. In this case, listings for

multiple source files are appended to the listing file. In either case,
the directory implied’ by the listing name is used for the Assembier’s

listing scratch file. The -lo option is only meaningful if the -s or

the -l option is used.

Pathname for the generated object file. If objname ends with a
colon (), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputFilename.o). If
objname does not end with a colon, the object file is written to the
file objname. (In this case, only one source file should be specified
to the Assembler.)

Set the listing page size. (This option is only meaningful if the -s or -i
option is specified.) The ¿and w parameters are integers: /is the
page length (default = 75) and w is the page width (default = 126).

(These settings assume that Monaco 7 is being used with the MPW
Print command to the LaserWriter.)

-print mode [, mode]...
Set a print option mode. Mode may be any one of the following

PRINT directive options:

[NOIGEN macro expansions
{NOIPAGE page ejects
[NO]WARN wamings
[INOIMCALL macro calls
INOIOBI object code
(NOIDATA data
[NOMDIR macro directives
[NO]HDR page headings
[NO]LITS literals
[NO]STAT progress information
[NOS YM symbol table display

See the MPW Assembler Reference manual for a discussion of these

PRINT settings. You.can specify more then one print option by

specifying multiple -print options or multiple mode parameters

separated by commas. For example,

Asm -print nowarn,noobj, nopage

Note that single-letter options are provided for some of the settings:
-f (NOPAGE), -h (NOHDR), -p (STAT), and -w (NOWARN).

-p Write assembly progress information (module names, included,
loads, and dumps) and summary information (number of errors,
warnings, and compilation time) to the diagnostic output file. (This
option is the same as PRINT STAT.)

-S Set PRINT NOOBJ to generate a shortened form of the listing file. If
the -l option is also specified, the rightmost option takes
precedence.

(-t Display the assembly time and the number of lines to the diagnostic
file even if progress information Cp) is not being displayed.

-W Suppress warning messages (same as PRINT NOWARN),.

-wb Suppress branch warning messages only.

Examples Asm -w -l Sample.a Memory.a -d Debug
Assembles Sample.a and Memory.a, producing object files Sample.a.o and
Memory.a.o. Suppresses warnings and define the name "Debug" as having the
value 1. Two listing files are generated: Sample.a.Ist and Memory.a.lst. (Sample.a
dud Memory.a are located in the AExampiles directory.)

See also MPW Assembler Reference

AEN

Syntax

Description

Input

Output

Diagnostics

Status

Examples

226 Beep

Beep — generate tones

Beep [note | duration [,level]]}...

For each parameter, Beep produces the given note for the specified duration and

sound level on the Macintosh speaker. If no parameters are given, a simple beep is

produced.

Note is one of the following:

a A number indicating the count field for the square wave generator, as described in
the Summary of the “Sound Driver” chapter of Inside Macintosh

a A string in the following format

{ n] letteri# | b]

nis an optional number between -3 and 3 indicating the octaves below or above
middle C, followed by a letter indicating the note (A-G) and an optional sharp (#)

or flat (b) sign.

The optional duration is given in sixtieths of a second. The default duration is 15
(one-quarter second).

The optional sound level is given as a number from 0 to 255. The default level is 128.

None.

None.

None.

A status value of 0 is always retumed.

Beep

Produce a simple beep on the speaker.

Beep 2C,20 '2C#,40' 2D, 60

Play the 3 notes specified: C , C sharp, and D, all two octaves above middle C, for

one-third, two-thirds, and one full second respectively. Notice that the second

parameter must be quoted; otherwise the sharp character (#) would indicate a

comment.

Syntax

Description

Input

Output

Diagnostics

Status

Examples .

Begin...End — group commands

Begin

command...

End

Groups commands for pipe specifications, conditional execution, and input/output
specifications. Carriage returns must appear at the end of each line as shown above,
or be replaced with semicolons (;). If the pipe symbol (|), conditional execution

_ operators (&& and |), or input/output specifications (<, >, >>, 2, >>) are used, the
Operator must appear after the End command, and applies to all of the enclosed
commands.

Note: Begin and End behave like left and right parentheses. Once the Begin
command has been executed, the Shell will not execute any of the subsequent
commands until it encounters the End command, so that inpul/output specifications
can be processed. l

None.

None.

None.

The status value of the last command executed is returned. (If no commands appear
between Begin and End, 0 is returned.)

The following commands save the current variables, exports, aliases, and menus in
file SavedState.

Begin

Set

Export

Alias

AddMenu

End > SavedState

Notice that the output specification following “End” applies to all of the commands
within the Begin...End control command. This command is identical to the
following:

(Set; Export; Alias; AddMenu) > SavedState

Begin...End 227

The commands Set, Export, Alias, and AddMenu write their output in the form of

commands; these commands can be executed to redefine variables, exports, aliases,

and menus. Therefore, after executing the above commands, the command

SavedState

will restore all of these definitions.

Note: This technique is used in the Suspend command file to save state information.

(You might want to take a look at Suspend, which also saves the list of open windows

and the current directory.) The Resume file runs the file that Suspend creates,

restoring the various definitions, reopening the windows, and resetting the current

directory.

228 Begin. End

om

Syntax

Description

input

Output

Diagnostics

Status

Examples

See also

Break — break from For or Loop

Break [If expression]

If expression is nonzero, Break terminates execution of the immediately enclosing

For or Loop command. (Null strings are considered zero.) If the “If expression’ is
omitted, the break is unconditional. (For a definition of expression, see the Evaluate
command in this chapter.) ,

Errors are written to diagnostic output.

The following status values are returned:

0 No errors detected

1 Break is found outside a For...End or Loop...End, or the parameters to Break are
incorrect

Set Exit 0

For file in Startup UserStartup Suspend Resume Quit

EnTab "{file}" > temp

Break If {Status} != 0
Rename -y temp "{file}"

Print -h "{file}"

Echo "{file}"

End

This For loop entabs and prints each of the special MPW command files; the Break
command terminates the loop if a nonzero status value is returned. (See the For
command for an explanation of this example.)

For, Loop, and If commands

Evaluate command (for a description of expressions)

“Structured Commands’ in Chapter 3

Break 229

Syntax

Description

Input

Output

Diagnostics

Status

Options

C — C Compiler

C [option...) {flle]

Compiles the specified C source file. Compiling file Name.c creates object file
Name.c.o. (By convention, C source file names end in a *.c” suffix.) If no filenames

are specified, standard input is compiled and the object file “c.o” is created.

See the manual MPW C Reference for details of the C language definition.

If no filenames are specified, standard input is compiled. You can terminate input by
pressing Command-Enter.

if you specify the -e option, preprocessor output is written to standard output, and no
object file is produced.

Errors and wamings are written to diagnostic output. If the -p option is specified,

progress and summary information is also written to the diagnostic output.

The following status values are retumed:

0 Successful completion
1 Errors occurred

-€ Include comments with the preprocessor output. (By default,
comments are not written to the preprocessor output.)

-d name Define name to the preprocessor with the value 1. This is the same
as wnting

#define name 1

at the beginning of the source file. (The -d option does not override
#define statements in the source file.)

-d name=string Define name to the preprocessor with the value string. This is the
same as wriling

#define name string

230

-ga

at the beginning of the source file.

Do not compile the program. Instead, write the output of the
preprocessor to standard output. This option is useful for debugging

preprocessor macros.

Generate stack frame pointers in A6 (that is, LINK A6,x ... UNLK
A6) for all functions. Insert the procedure name into the object
code that follows the procedure’s RTS instruction. Use this option if
you plan to debug the program with MacsBug.

Generate stack frame pointers in A6 (that is, LINK A6,x ... UNLK

A6) for all functions.

-i pathname |,pathnaméi...

-0 objname

Search for include files in the specified directories. Multiple -i
options may be specified. At most 15 directories will be searched.

The search order is as follows:

1. The include file name is used as specified. If a full pathname is
given, then no other searching is applied.

if the file wasn't found, and the pathname used to specify the file

was a partial pathname (no colons in the name or a leading

colon), then the following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -i options, in the order listed.

4, The directories specified in the Shell variable (Cincludes}.

Pathname for the generated object file. If obfname ends with a
colon (;), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputFilename.o). If
objname does not end with a colon, the object file is written to the

file objname.,

Write progress information (include file names, function names,
and sizes) and summary information (number of errors and
warnings, code size, global data size, compilation time, and

compilation memory requirements) to diagnostic output.

232

-q

-s name

-u name

-x55

Optimize the code for speed, even if it’s necessary to make the

object code larger. By default, the Compiler performs

optimizations that make the code both smaller and quicker—the -q

option will perform further optimizations that may make the code

faster, but also larger. The -q option should be specified only for

` those parts of the program that are executed frequenuy—it’s

counterproductive to specify -q on code that’s rarely executed.

Allow the optimizer to assume that memory locations do not

change except by explicit stores—that is, the optimizer is

guaranteed (1) that no memory locations are I/O registers that can

be changed by extemal hardware, and (2) that no memory

locations are shared with other processes that can change them

asynchronously with respect to the current process. This option

must be used with extreme caution in device drivers, operating

systems, and shared-memory environments, and when interrupts

are present.

Name the object code segment (The default segment name is

“Main”.) Because a segment may not exceed 32K bytes, large

programs require multiple segments with different names. This

option is overridden if the following statement appears in the

source code:

#define SEG name

Undefine the predefined preprocessor symbol name. This is the

same as writing

#undef name

at the beginning of the source file.

Suppress Compiler warning messages. (By default, warnings are

written to diagnostic output.)

Use MOVE #0,x instructions rather than CLR x instructions for

nonstack addresses. This option may be useful when writing device

drivers.

Make bit fields of types int, short, and char be signed. CThe default

is for all fields to be unsigned.)

for

rr

Examples

` Limitations

Availability

See also

-z6 Always allocate 32 bits for enumerated data types, to maintain

l compatibility with Standard C. The default is to allocate 8, 16, or 32

bits.
Caution: This option is not compatible with the Macintosh

interface libraries.

-Z84 Enable language anachronisms. Warning messages are provided

when anachronisms are encountered, and the constructs are

- compiled. (See MPW C Reference for information.)

C -p Sample.c

Compile Sample.c, producing the object file Sample.c.o. Write progress

information to diagnostic output. (Sample.c is found in.the CExamples folder.)

1 MB of RAM is recommended; on a Macintosh 512K, even small C programs may

not. compile.

The C Compiler is available as part of a separate Apple product, Macintosh
Programmer’s Workshop C.

MPW C Reference

Syntax

Description

Input

Output

234 Canon

Canon — canonical spelling tool

Canon [-s] [-a] [cn] dictonaryFile | inputFile ... |

Canon copies the specified files to standard output, replacing identifiers with the

canonical spellings given in dictionaryFile. If no files are specified, standard input is
processed.

DictionaryFile is a text file that specifies the identifiers to be replaced and their new

(or canonical) spellings. Identifiers are defined as a letter followed by any number of

letters or digits (underscore (_) is also considered a letter). Each line in the
dictionary contains either a pair of identifiers or a single identifier:

a If two identifiers appear, the first is the identifier to replace, and the second is its
canonical spelling. For example, the dictionary entry

NIL NULL # change NIL to NULL

changes each occurrence of NIL to NULL.

a A Single identifier specifies both the identifier to match and its canonical
spelling—-chis feature is useful because the matching may be case insensitive or

restricted to a fixed number of characters. (See the “Options” section below.) For

example, the dictionary entry

true

changes all occurrences of “TRUE”, “True”, “tRUE”, and so on to “true”.

You can specify a left context for the first identifier on each line of the dictionary by

preceding it with a sequence of non-identifier characters. Replacement will then

occur only if the left context in the input file exactly matches the left context in the

dictionary: For example, if C structure component upperLeft should be replaced with

topLeft, the dictionary might include the following:

-upperLeft topLeft

->upperLeft topLeft

You can include comments in the dictionary file by using the # symbol—everything

from the # to the end of the line is ignored.

Note: The file Canon.Dict is a sample dictionary file that’s included with MPW. (See

the “Examples” section below.)

Standard input is read if no files are specified.

The specified files are written to standard output with the identifiers replaced. (Words

in comment sections are also replaced.)

a

fo

Diagnostics

Status

Options

Examples

Errors are written to diagnostic output.

The following status values are returned:

0 All files processed successfully
1 Error in command line

2 Other errors

-8 Use case-sensitive matching. (Pattern matching is normally case
insensitive.)

a Causes the characters $, %, and @ to be considered letters (for
defining identifiers). This option is useful when processing
assembly-language source.

<n Take only the first n characters as significant. Normally all
. characters in identifiers are significant.)

The file Canon.Dict, in the Tools folder, contains a list of all of the identifiers used in
the Standard C library and the Inside Macintosh C interfaces. This list was made
from the Library Index in the MPW C Reference manual. The entries in Canon Dict
look like the following:

abbrevDate

ABCallType

abortErr

ABProtoType

abs

acos

activateEvt

The following command copies the file Source.c to the file Temp; identifiers whose
first eight characters match a dictionary entry are replaced with that entry.

Canon -c 8 " {MPW} "Tools:Canon.Dict Source.c > Temp

The -c 8 option is useful when porting source from other systems where only eight
characters are significant.

Note: The list of Pascal identifiers used in the Inside Macintosh interface is almost
identical to the list used in C. The dictionary Canon.Dict can also be used to port
Pascal programs from other systems, as long as you don't mind using the canonical
capitalizations for the various Standard C library identifiers.

Canon 235

Limitations The maximum line length in the dictionary file is 256 characters. Longer lines are

considered an error. l i

236 Canon

Syntax

Description

Input

Output

Diagnostics

Status

Examples

Catenate — concatenate files

Catenate [file... }

Catenate reads the data fork of each file in sequence and writes it to standard output If
no input file is given, Catenate reads from standard input. None of the input files may
be the same as the output file.

Standard input is processed if no filenames are specified.

All files are written to standard output.

Errors are written to diagnostic output.

The following status values are retumed:

O All files were processed successfully
1 One or more files were not found
2 An error occurred in reading or writing

Catenate Makefile.a

Writes Makefile.a to the active window, immediately following the command.

Catenate Filel File2 > CombinedFile

Concatenates the first two files and places the result in the third. If CombinedFile
doesn’t exist, it will be created, if it exists, it will be overwritten.

Set selection “Catenate §°

Capture the selection from the target window in the Shell variable {selection}.

Catenate >> {Worksheet}

Append ail subsequently entered text.to the Worksheet window (until end-of-file is

indicated by pressing Command-Enter).

Catenate 237

Warnings Beware of commands such as

Catenate Filel File2 > Filei

This command will cause the original data in File1 to be lost. To append one file to

another, use the form

Catenate File2 >> Filel

See also Duplicate command

“Redirecting Input and Output” in Chapter 3

238 Catenate

Syntax

Description

Output

Diagnostics

‘Status

Options

Examples

See also

Clear — clear the selection

Clear I -c count] selection | window]

Finds selection and deletes its contents. The selection is not copied to the Clipboard.
(For a definition of selection, see Chapter 4.)

If window is specified, the Clear command acts on that window. It’s an error to
specify a window that doesn’t exist. If no window is specified, the command operates
on the target window (the second window from the top).

None.

None.

Errors are written to diagnostic output.

Clear returns the following status values:

0 At least one instance of selection was found
1 Syntax error

2 Anything else

< count Repeat count—find and delete count instances of selection.

Clear §

Deletes the current selection. This is like the Clear command in the menu bar, except
that the action occurs in the target window rather than the active window.

Clear /BEGIN/:/END/

Select everything from the next BEGIN through the following END, and delete the
selection.

Cut and Replace commands

“Selections” in Chapter 4 (see Appendix B for a summary)

Clear 239

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

240 Close

ponnn ee

Close — close a window

Close [-y | -n] I window]

Close window. If no window is specified, the target window is closed. If changes to the

window haven't been saved, a dialog box requests confirmation of the Close. In

command files, you can use the -y or -n options to avoid this interaction.

None.

None.

Errors are written to diagnostic output.

Close returns the following status values:

0 No errors
1 Syntax error

2 Any other error

-Y Answer "Yes" to the confirmation dialog, causing the contents of

window to be saved before closing it

-n Answer “No” to the confirmation dialog, causing window to be

Closed without saving any changes.

Close Instructions.a

Close and save the window titled Instructions.a. If any changes had been made to the

file, the following dialog would appear:

N

Save changes to
HD:MPW:AExamples:Instructions.a

|
C Noy] N

You can bypass this dialog with the -y or -n options.

24]

SS
S

Compare — compare text files

Syntax Compare [option ...] filet | fille2)

Description Compares the lines of two text files and writes their differences to standard output.

Options are provided to compare a specific column range in each file (-c), to ignore

blanks (-b), and to ignore case (-D.

Both files are read and compared line-for-line. As soon as a mismatch is found, the

two mismatched lines are stored in two stacks, one for each file. Lines are then read

alternately (starting from the next input line in fez) until a match is found to put the

files back in synchronization. If such 2 match is found, Compare writes the

mismatched lines to standard output.

Files are considered resynchronized when a certain number of lines in the two stacks

exactly match. By default, the number of lines, called the grouping factor, is defined

by the formula

G = Trunc((2.0 * Logiq(4M) + 2.0)

where G is the grouping factor and M is the number of lines saved in each stack so far.

This definition requires more lines to be the same after larger mismatches. Using this

formula, the following table shows the grouping factor, G, as 2 function of the number

of mismatched lines:

M: Number of mismatched lines G: Grouping factor

i to 3 2

4 to 9 3

10 to 31 4

32 to 99 5

100 to 315 6

316 to 999 7

1000 to 3161 8

3162 to 9999 9

With the default dynamic grouping, the -g option sets the lower limit for G (which

must be at least 2, since the formula is always applied). The -s option lets you fix Gasa

static constant. A static G may be desirable under some circumstances, but may also

resynchronize the files at undesirable points, especially if G is too small. It's

recommended that you use the default (dynamic G) first; if the results aren't

satisfactory, try the static G option.

With either option, there’s a limit on the depth of the stacks; that is, to how far out of

synch the two files can get before they’re no longer worth comparing. For a dynamic

G, the limit on the number of mismatched lines is 1000, but you can choose a lower

limit with the -d option. For the static G option, typical values for G are 1 to 5, and the

stack depth should be between about 10 and 50 (the default limit is 25).

242 Compare

Looe

FOS

Input

Output

Diagnostics

Status

The file] and file2 parameters specify the two files to be compared. If file2 is
omitted, flel is compared to standard input.

Mismatched lines and descriptive messages are written to standard output With
the -h option, a portion of each file’s output lines are displayed side by side,
otherwise, the first stack’s lines are displayed before the second stack’s. In either case,
lines are shown with their line numbers.

-The following messages appear when showing mismatches:

Nonmatching lines

... both stacks are displayed...

Extra lines in lst before <äneæ in 2nd

...dines in filel’s stack are displayed...

Extra lines in 2nd before <line in lst
i ...lines in file2’s stack are displayed...

Extra lines in lst file

..-lines in filel’s stack are displayed...

Extra lines in 2nd file :
...dines in file2’s stack are displayed...

If an end-of-file condition occurs or the maximum stack depth is reached during
resynchronization, then one of the following messages will also appear:

x** Nothing seems to match ***

x** EOF on both files ***

xx* EOF. on file 1 ***

x* EOF on file 2 *

If both files are in synchronization, and both reach their end-of-file at the same ume,
then the following message will appear if any mismatches occurred:

*** EOF on both files at the same time ***

If both files match, then the following message is displayed:

*** Files match ***

Parameter errors are written to diagnostic output

The following status codes are returned to the Shell:

0 Files match

1 Parameter or option error

2 Files don’t match

3 Execution terminated

Compare 243

Options -b Treat several blanks (spaces or tabs) as a single space, and ignore
trailing blanks.

-¢ col1-coia,col1-col2}

-d depth

Compare only the columns coll to col2 of each file. If the second

column range is omitted, then the first range applies to both files;
otherwise the first range applies to Alei and the second range
applies to flle2. If col? is omitted, 1 is assumed. If col2 is omitted,
255 is assumed.

Note: To use the < option, tabs must be expanded. The tab setting
is determined from the file’s tab value. (See also the -x option

below.)

Sets the maximum stack depth (size) for resynchronization, that is,

how far out of synch the files can get before they’re no longer worth
comparing. Depth is an integer value from 1 to 1000. The default is

1000 if dynamic grouping is being used, and 25 for static Cs)
grouping.

-g groupingFactor

-h width

-1

Compare

Specifies the grouping factor, G. For dynamic grouping, -g specifies
the minimum grouping factor, that is, the minimum number of
lines that must match for the two files to be considered
resynchronized. (This value must be at least 2, which is the default.)
Tf the -s (static) option is used, -g specifies a fixed grouping factor.
(Values are from 1 to 1000; the default is 3.)

Display mismatches in the horizontal format. Only a portion of
each mismatched line is displayed side by side. Width is a number
from 70 to 255 that controls the number of characters displayed in
each portion by specifying the total display line width.

Ignore case differences (convert all lines to lowercase before

comparing them). The default is case sensitive.

Do not write any messages to standard output if both files match.

Write Compare’s version information to diagnostic output.

Static (fixed) grouping factor (the grouping factor is set with the -g

option).

Ignore trailing blanks (spaces or tabs). (This is a subset of

the -b option.)

"N

ot

Exampies

Lirnitations

See also

-X Suppress tab expansion. Normally, except when the -b option is
used, tabs are expanded into spaces. The tab value is determined
from the file’s tab setting (a resource); if there is no setting, 4 is
used.

Caution: This option can cause stacked lines to be displayed
incorrectly if the files contain tabs. Also, the -< option should not
be used with -x, because -c depends on the true ‘columns as

l displayed with tabs expanded.

Note: All comparison criteria that affect the individual lines before
comparison—column range (-c), blanks compression (-b), and case conversion

CD—are applied to those lines before they are stacked. Thus when the lines are
displayed, they'll be shown in their modified form.

Compare File File.bak > Mismatches

Compare File and File.bak, writing the results to the file Mismatches. No options are
specified, so dynamic grouping is used, blanks are retained, tabs are expanded into
spaces, and matching is case sensitive.

Compare File.old.§ File.new.§

Compares the selected portions of the two windows and writes out the results.

Compare can handle text files with a maximum line length of 255 characters.

The text files compared should be fewer than 9999 lines long, because the displays are
formatted based on four-digit line numbers.

Equal command (Equal is a quicker command that tells you whether files are
different, and stops at the byte at which they differ.)

Compare 245

Confirm — display confirmation dialog

Syntax Confirm [-t] message

Description Displays a confirmation dialog with OK and Cancel buttons and the prompt message.

There is no output to this command—the result of the dialog is returned in the {Status}
variable. i

Note: Because Confirm returns a nonzero status value to indicate that No or Cancel

was selected, a command file should set the Shell variable {Exit to zero before
executing the Confirm command. (This step is necessary because the Shell aborts

command file processing when a nonzero status value is returned and {Exit} is

nonzero.)

Input None.

Output None.

Diagnostics Errors are written to diagnostic output.

Status The Confirm command returns the following status values:

0 The OK Cor yes) button was selected

1 Syntax error

4 The Cancel (or no) button was selected
5 The Cancel button was selected in a three-way dialog—see the -t option

Note: In the context of a two-button dialog, Cancel means the same thing as No.

Options -t Display a three-way confirmation dialog, which includes Yes, No,
and Cancel buttons. In this case, 4 means No and 5 means Cancel.

246 Confirm

oo

Examples

See also

Set Exit 0

Confirm "Replace files with the same name?"
Tf {Status} == 0

Duplicate -y Source: Destination:
End

Set Exit 1

The following confirmation dialog will be displayed:

Replace files with the same name?

If the user selects the OK button, the Duplicate command will be executed.

The following command file makes use of a three-way confirmation dialog:

Set Exit 0

Set list ""

For file In ‘files -t TEXT’

Confirm -t "Print file (file}2"

Set SaveStatus {Status}

Continue If {SaveStatus} == 4 # No

Break If {SaveStatus} == 5 # Cancel
Set list "{list} '{file}'" # Yes

End

Print {PrintOptions} {list}
Set Exit i

This example prints selected TEXT files in the current directory. For each file, it
displays a dialog with three choices (Yes, No, and Cancel). Selecting Yes prints the
file. If you select No, the Continue command causes this file to be skipped, but
processing continues with the next file in the list. If you select Cancel, the Break
command causes the For loop to be terminated, ending the question-and-answer
session. The filenames are saved in the variable {lis}, and printed following the loop.

Alert and Request commands

Confirm 247

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See also

——————————————————

Continue — continue with next iteration of For or Loop

Continue [If expression |

If expression is nonzero, Continue terminates this iteration of the immediately

enclosing For or Loop command, and continues with the next iteration. (Null strings

evaluate to zero.) If the “If expression” clause is omitted, the Continue is

unconditional. If no further iterations are possible, the For or Loop is terminated.

(For a definition of expression, see the Evaluate command in this chapter.)

None.

None.

Errors are written to diagnostic output.

Continue returns the following status values:

0 No errors
1 Error in parameters, or Continue not within For...End or Loop...End

Set Exit 0.

Set list ""

For file In ‘files -t TEXT

Confirm -t "Print file {file}?”

Set SaveStatus {Status}

Continue If {SaveStatus} == 4 # No

Break If {SaveStatus} == 5 # Cancel

Set list "{list} ‘{file}'” # YesEnd

Print {PrintOptions} {list}

Set Exit 1

In this example, the Continue command is executed if the user selects No (status

value 4). The Continue causes the current file to be skipped, but processing continues

with the next file in the list.

(For a full explanation of this example, refer to the Confirm command on the

previous page.)

For, Loop, Break, and If commands

248 Continue

Evaluate command for a description of expressions

“Structured Commands” in Chapter 3

Continue 249

Copy — copy selection to Clipboard

Syntax Copy [-c count] selection | window }

Description Finds selection in the specified window and copies it to the Clipboard, replacing the

previous contents of the Clipboard. If no window is specified, the command operates

on the target window (the second window from the top). It’s an error to specify a

window that doesn’t exist.

For a definition of selection, see “Selections” in Chapter 4, a summary of the
selection syntax is contained in Appendix B.

Note. To copy files, use the Duplicate command.

Input None.

Sisi None.

Diagnostics Errors are written to diagnostic output.

Status Copy returns the following status values:

0 At least one instance of the selection was found

1 Syntax error

2 Any other error

Options -€ count For a count of n, find and copy the mh instance of selection.

Examples Copy §

Copy the current selection to the Clipboard. This command is like the Copy

command in the Edit menu, except that the action takes place in the target window.

Copy /BEGIN/:/END/

Select everything from the next BEGIN through the following END, and copy this

selection to the Clipboard.

See also Cut and Paste commands

“Selections” in Chapter 4 and Appendix B

250 Copy

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

2

Count — count lines and characters

Count [-1 }{-c] (fle...)

` Counts the lines and characters in its input, and writes the results to standard output. If no files are specified, standard input is read. If more than one file is specified,
separate counts are printed for each file, one per line, preceded by the filename, and
a total is printed following the list.

Standard input is read if no files are specified on the command line.

Line and character counts are written to standard output

Errors are written to. diagnostic output. .

Count returns the following status values:

0 No errors
1 Error in parameters
2 Unable to open input file

-1 Write only the line counts.

-€ Write only the character counts.

Count MakeFile.c Count.c

will display line counts and character counts in the form
MakeFile.c 43 981
Count.c 153 3327
Total 196 4303

Files | Count -l

Display the total number of files and directories in the current directory.

Count -1 §

Display the number of lines selected in the target window.

Count 251

Note The source code for Count is included in the CExamples folder, in the file Count.c, as

part of MPW C.

252 Count

Syntax

Description

Input

Output

Diagnostics

Status

Options

C Examples

See also

PN

Cut — copy selection to Clipboard and delete it

Cut { -c count] selection { window}

Finds selection in the specified window, copies its contents to the Clipboard, and

then deletes the selection. If no window is specified, the command operates on the

target window (the second window from the top). It’s an error to specify a window that

doesn’t exist.

For a definition of selection, see “Selections” in Chapter 4; a summary of the

selection syntax is contained in Appendix B.

None.

None.

Errors are written to diagnostic output.

Cut retums the following status values:

O - At least one instance of the selection was found
1 Syntax error

2 Any other error

-¢ count Finds and cuts count instances of selection.

Cut §

Cut the current selection in the target window. (This is the same as the Cut menu item,

except that it operates on the target window rather than the active window.)

Cut- /BEGIN/:/END/

Select everything from the next BEGIN through the following END, copy the contents

of the selection to the Clipboard, and then delete the selection.

Clear, Copy, and Paste commands

“Selections” in Chapter 4 and in Appendix B

Cut 253

Syntax

Description

CvtObj — convert Lisa Workshop object files to MPW

object files

CvtObj I-n namesFile] [-o outputFile | [-p] LisaObjFile

Converts a Lisa object file (OBJ file) to the Macintosh object format Co file). This

command is for Lisa Workshop users who have old object files but no source files that

can be ported to the MPW system.

CvtObj supports object files produced by the Lisa Pascal Compiler, the Green Hills C

Compiler, and the TLA Assembler that were targeted to the Macintosh run-time

environment. Object files produced by other compilers have not been tested, but

should work. The program should not be used to convert object files targeted for

execution on Lisa.

Object files produced by the Lisa Pascal Compiler must have been compiled with the

Macintosh code generation option, $M+. Object files produced by the Green Hills C

Compiler must have been compiled with the default code generation option, that is,

the -Usa option must not have been specified. Assembler code produced by the TLA

Assembler should conform to the guidelines outlined in the “Using Assembly

Language” chapter of Inside Macintosh.

CvtObj detects and rejects a number of Lisa object record types. If this happens,

CvtObj generates a fatal error message ("Can't handle ..."), and terminates without

producing an output file. However, CvtObj cannot detect and reject ali object files

targeted for execution on the Lisa, especially Pascal and TLA Assembler files.

The Lisa Workshop tools support only 8-character case-insensitive (shifted to

uppercase) external identifiers. The MPW compilers support variable-length, case-

sensitive external identifiers. (The MPW Pascal Compiler still defaults to upshifting

Pascal identifiers, primarily for language compatibility, portability of sources, and

ease in providing both C and Pascal interfaces to the Macintosh ROM routines.)

CvtObj provides the -n option for substituting names, so that old object files can be

properly linked with new object files. The -n option specifies a “names” file, which

controls name substitution.

254 CvtObj

Input

Output

Diagnostics `

Status

Options

Data initialization. In general, CvtObj automatically matches the Lisa object file

semantics with those of the Macintosh. However, data initialization records are more
difficult to handle. With the Lisa tools, data areas were often defined with differing
lengths, partial contents in different files, and so on. The underlying model was
Fortran-named common areas, with multiple initialization sources. On the
Macintosh, the default is to use only the first definition of a data module. In order to
match the Macintosh default as closely as possible, CvtObj does not emit a defining
instance of a data area unless initialization values are seen. For C data areas that need
to be initialized to zero, this behavior can result in Linker error messages reporting
that the data area names are “unresolved external references.” If the references come
from a file produced by CvtObj, then the define directive can be used in a
names Cn) file to request CvtObj to emit a defining instance—this should result in a
proper size definition for the data area, unless the data area was defined elsewhere as
larger.

Note: The DumpObj command can be useful in tracking down and fixing anomalies
in external names and data area definitions when using CvtObj.

None.

If no -o option is specified, output is written to the file CvtObj.out.o.

Errors and warnings are written to the diagnostic file. Progress information is also
written to the diagnostic file (with the -p option).

The following status values are returned:

0 No problem

2 Fatal error
3 User interrupt

-n namesFile Name conversion file. In this text file, lines that begin with a space
or tab are interpreted as name substitution lines; the first name is
the old name, the second name is the new name. (See “Examples”

below.) All occurrences of the old name are replaced with the new
name. Lines that begin with the word define, followed by an entry
name, create a global data module for that name.

-0 outputFile Direct output to outputFile. The default output filename is
CvtObj.out.o.

-p Write progress information to diagnostic output.

CvtObj 255

Examples

See aiso

CvtObj -o MyFile.o MyLisaFile.OBJ

Convert file MyLisaFile.OBJ, placing the output in MyFile.o.

CvtObj -n NewNames -o MyFile2.o MyLisaFile2.OBJ

Convert file MyLisaFile2.OBJ, placing the output in MyFile2.0, and applying the

name translations specified in NewNames, The NewNames file might contain the

following:

ACLOSEOUT CloseOutput

ADRAWROUN DrawRoundFigure

AFOO2 Foo2

define FOO

where A indicates a leading space or tab character.

TLACvt, Link, and DumpObj commands

Appendix H, "Object File Format"

256 CvtOb}

Syntax

Description

input

Output

Diagnostics

Status

Options

Examples

Date — write the date and time

Date {-a | -s} {[d1 +}

Writes the current date and time to standard output.

None.

Standard ‘output

Errors are written to diagnostic output.

Status code 0 is returned if the options are consistent, otherwise 1 is returned,
C

-a Abbreviated date. Three-character-abbreviations are used for the

month and day of the week. For example, Thu, Aug 29, 1985... _

-d Write the date only.

-S Short date form. Numeric values are used for the date. The day of
the week is not given. For example, 8/29/85 (month/day/year). -

-t Write the time only.

Date

retums the date in the form

Friday, February 14, 1986 10:34:25 PM

Date -a

returns

Fri, Feb 14, 1986 10:34:25 PM

Date -s -d

returns

2/14/86

Date 257

Syntax

Description

Input

Output

Diagnostics

Status

Options

Delete — delete files and directories

Delete [-y | -n} [-i] L-p] name..

Deletes file or directory name. If name is a directory, then name and its contents

(including all subdirectories) are deleted.

For deleting directories, a dialog box will request confirmation for the deletion.

The -y or -n options can be used in command files to avoid this interaction.

None.

None.

Errors and warnings are written to diagnostic output. Progress and summary

information is also written to diagnostic output if the -p option is specified.

The following status codes are returned:

0 All specified objects were deleted (except for any directories skipped with

the -n option)

1 Syntax error
2 An error occurred during the delete

-i Ignore errors (that is, do not print messages, and return a status

value of 0).

-a Answer “no” to any confirmation dialog that may occur, skipping

the delete for any directories encountered.

-p List progress information as the delete takes place.

-y Answer “yes” to any confirmation dialog that may occur, causing

any directory encountered to be deleted.

258 Delete

Examples

Warnings

See Also

Delete HD:MPW:*.c

Delete ail items in the MPW folder that end in *.c”. (Recall that the Shell first replaces

the parameter “=.c” with a list of filenames matching the pattern—the Delete

command then deletes each of these files.)

Beware of potentially disastrous typing mistakes such as the following:

Delete = .c

Note that the space after “="—this space causes “=" and “.c" to be treated as two
separate. parameters. In this case, Delete would delete ali files in the current
directory, and also attempt to delete a file named *.c’.

Also note that the following command deletes everything.

Delete =:

That is, the filename pattern =: expands to the names of all volumes online
(including the startup volume!).

When deleting files en masse, it’s a good practice to use the Echo command to verify
the action of the filename generation operators; for example,

Echo *.c¢

Clear command (for deleting selections)

“Filename Generation” in Chapter 3

Delete 259

DeleteMenu — delete user-defined menus and items

Syntax DeleteMenu [menuName { itemName]]

Description Deletes the user-defined item itemName, in the menu menuName . If itemName is

omitted, all user-defined items for menuName are deleted.

Caution: If ttemName and menuName are both omitted, all user-defined items are

deleted.

Menu items that haven’t been added with AddMenu can’t be deleted with

DeleteMenu.

input None.

Output None.

Diagnostics Errors are written to diagnostic output.

Status DeleteMenu returns the following status values:

0 No errors

1 Syntax error

2 Other errors

Examples DeleteMenu Search

Deletes all user-defined items from the Search menu.

See also AddMenu command

260 DeleteMenu

a

Syniax

Description

Input

Output

Diagnostics

_ee—E—EeEOEeEee eee ee Ee a a a e a

a e r a a A

DeRez — Resource Decompiler

DeRez [option... | resourceFile [resourceDescriptionFile... |

Creates a text representation (resource description) of the resource fork of

resourceFile, according to the resource type declarations in the resource description

file(s). The resource description is written to standard output

A resource description file is a file of type declarations in the same format as that

used by the Resource Compiler, Rez. The type declarations for standard Macintosh

resources are contained in the files Types.r and SysTypes.r, contained in the

{RIncludes} folder. If no resource description file is specified, the output consists of

data statements giving the resource data in hexadecimal form, without any

additional format information.

if the output of DeRez is used as input to Rez, with the same resource description files,

it produces the same resource fork that was originally input to DeRez. DeRez is not

guaranteed to be able to run a declaration backwards—-if it can't, it produces a data

statement instead of the appropriate resource statement

DeRez ignores all include (but not #include), read, data, and resource

statements found in the resourceDescriptionFile. (It still parses these statements for

correct syntax.)

For the format of resource type declarations, see Chapter 6 and Appendix D.

Standard input is never read. DeRez requires a resource file as input Optional

formatting information may be given by specifying one or more resource description

files.

For all input files on the command line, the following search rules are applied:

1. DeRez tries to open the file with the name specified “as is.”

2. If rule 1 fails, and the filename contains no colons or begins with a colon, DeRez

appends the filename to each of the pathnames specified by the {RIncludes}

variable and tries to open the file.

A resource description is written to standard output. The resource description

consists of resource and data statements that can be understood by Rez. (See

Chapter 6.)

If no errors or warnings are detected, DeRez runs silently. Errors and warnings are

written to diagnostic output.

DeRez 26)

Status

Options

262 DeRez

The following status values are returned:

Whe ©

No errors

Error in parameters

Syntax error in file

I/O or program error

-dlefine] macrol- data }

Define the macro variable macro to have the value data. If. data is

omitted, then macro is-set to the null string—note that this still

means that macro is defined. The -d option is the same as writing

#define macro [data }

at the beginning of the input. The -d option may be repeated any

number of times.

-mlaxstringsize] n
Set the maximum string size to m, n must be in the range 2-120. This

setting controls how wide strings will be in the output.

-only typeExpr ((ID1[: ID2]) | resourceName }

-only type

-P

Read only resources of resource type typeExpr. If an ID, range of

IDs, or resource name is given, read only those resources for the

given type. This option may be repeated.

Note: typeExpr is an expression, so literal quotes (') might be
needed. If an ID, range of IDs, or name is given, the entire option

parameter must be quoted; for example,

DeRez -only “'MENU'(1:128)"...

See also the “Examples” section below.

Note: The -only option cannot be specified together with the -skip

option.

A simpler version of the above option—no quotes are needed to

specify a literal type as long as it starts with a letter. No escape

characters or anything fancy is allowed. For example,

DeRez -only MENU...

Display progress and version information.

Suppress warning messages if a resource type is redeclared.

- Examples

See also

-sikipi typeExpr [C ID1[: ID2)) ! resourceName |
Skip resources of type typeExpr in the resource file. For example,

it’s very useful to be able to skip 'CODE' resources. typeExpr is an
expression—see the note under -only. The -s option may be

repeated any number of times.

-s{kip] type A simpler version of the -s option—no quotes are needed to specify

a literal as long as it starts with a letter.

-ulndef] macro Undefine the macro variable macro. This is the same as writing

#undef macro

at the beginning of the input file. It is only meaningful to undefine
the preset macro variables. This option may be repeated.

DeRez "{ShellDirectory}MPW Shell" -only MENU Types.r

Display all of the ‘'MENU' resources used by the MPW Shell. The type definition for
‘MENU! resources is found in the file Types.r.

DeRez HD:0S:System SysTypes.r ð
-only "'DRVR! (d"\0x00Scrapbookd")"

Decompile the Scrapbook desk accessory in the copy of the System file that's located

in directory HD:OS:. (The type definition for 'DRVR' resources is found in the file
SysTypes.r.

Rez and RezDet commands

Chapter 6, “Using the Resource Compiler and Decompiler’

Type declaration files in Rincludes folder:

a Types.r

a. SysTypes.r

m MPWTypes.r

Chapter 5, “Editing Resources With ResEdit*

DeRez 263

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

Directory — set or write the default directory

Directory [-q | directory]

If specified, directory becomes the new default directory; otherwise the pathname of

the current default directory is written to standard output.

Note: To display a directory’s contents, use the Files command.

None.

If no directory is specified, the default directory pathname is written to standard

outpul.

Errors are written to diagnostic output.

Status code 0 is returned if the command succeeded; otherwise 1 is returned.

-q Don't quote the pathname that is written to standard output

(Normally, a directory name is quoted if it contains spaces or other

special characters.)

Directory

Write the pathname of the current directory to standard output

Directory HD:MPW:AExamples:

Set the default directory to the folder AExamples in the folder MPW on the volume

HD. The final colon is optional.

Directory Reports:

Set the default directory to the volume Reports. (Note that volume names must end in

a colon.)

Directory :Include:Pascal:

Set the default directory to the folder Pascal in the folder Include in the current default

directory.

264 Directory

See also “File and Window Names’ in Chapter 1

Files and NewFolder commands

Directory 265

Syntax

Description

Input

Output

Diagnostics

Status

a

pana e a

DumpCode — work formatted resources

DumpCode [option...] resourceFile

Disassembles object code that is stored in resources such as ‘CODE’, 'DRVR', and

'PDEF. DumpCode reads from the resource fork of the specified file, and writes the

formatted assembly code to standard output. The default formatting convention is to

disassemble the code, and to display the corresponding bytes in hexadecimal and

ASCII.

The default behavior of DumpCode is to dump all the 'CODE' resources from a

program file. The -rt option can be used to dump resources of other types such as

drivers and desk accessories.

Some conventions about executable code resources are built into DumpCode, and

affect the formatted output in special ways:

u 'CODE resources with ID 0 are formatted as a jump table (unloaded formar).

m Other 'CODE' resources have information about jump table entries in the first four

bytes.

u ‘DRVR' resources have a special format at the beginning of the resource.

In addition, you can direct DumpCode to give a symbolic dump of data initialization

descriptors and initial values.

None.

DumpCode writes formatted resources to standard output

Errors and warnings are written to diagnostic output. Progress information can also

be written to diagnostic output (with the -p option).

DumpCode returns the following status values:

Q No problem
2 Fatal error

3 User interrupt

266 DumpCode

Options

Examples

Note: Numeric values for options can be specified as decimal constants, or as hex
constants preceded by a "$",

-d

-h

-A

-P

-r byte ll,byteM

-rt iypd=ID]

-$ resourceName

Suppress the disassembly and dumping of code. (The default is to
disassemble the code.)

This option is useful in producing a small output file, and looking at
just the resource names, sizes, and resource header information. It
is also useful when just some specialized information is desired,
such as the jump table or data descriptors.

Suppress the writing of header information, such as resource
relative locations, hexadecimal and ASCII equivalents, and so on.
The default is to produce this type of header information.
This option is useful in producing output that can be edited and
submitted to the Assembler for reassembly.

Suppress formatting of jump table. Only summary information for
the jump table is given. (The default is to format the jump table
unless one of the options -s, -rt, -n, or -jt is specified.)

Write only the resource names associated with resources. This
option is useful for finding segments or desk accessories by name.

Write progress information (filenames, resource names, IDs, and
sizes) to diagnostic output.

Limit the disassembly of code to the range bytel...byteN. The
default is to disassembie all bytes in a segment. If byteN is omitted,
then the rest of the segment is disassembled.

Dump only the single resource with type type and ID number of JD.
If Dis omitted, then all resources of the specified type are
dumped.

Dump only the single resource named resourceName. 4

DumpCode Sample > SampleDump

Format the 'CODE' resources in the file Sample, writing the output to the file
SampleDump. This output has the following format:

DumpCode 267

File: sample, Resource 3, Type: CODE, Name: _Datainit

Offset of first jump table entry: $90000018

Segment is $000000D2 bytes long, and uses 1 jump table entry

090000: 4887 FFFO er MOVEM.L DO-~D7/A0-A3, -(A7)

000004: 4247 'BG' CLR.W D7

000006: 4EAD 0032 'N..2! JSR $0032 (AS)

00000A: 2218 ane MOVE.L (A0)+,D1

etc.

See also DumpObj command

“The Jump Table” in the “Segment Loader” chapter of Inside Macintosh, for a

description of the jump table

268 © DumpCode

FON

Syntax

Description

Input

Output

Diagnostics

Status

Options

DumpObj — write formatted object file

DumpObj [option...] objectFile

Disassembles object code that is stored in the data fork of an object file. By
convention, object files end in the suffix .o. In addition, the object file must have type
‘OBJ '.

DumpObj does not read standard input

' DumpObj writes formatted object file records and disassembled code to standard
output

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpObj returns the following status values:

0 No problem
2 Fatal error
3 User interrupt

-d Suppress disassembly of code and display of data. The default is to
disassemble code and to display data in hexadecimal and ASCII.

-i Suppress substitution of names for IDs. The default is to preread the

entire file, processing the Dictionary records, and then to show
names in place of ID numbers.

This option is useful in examining an object file up to the point
where an object file format error has been reported by Link or Lib;
that is, it suppresses the preread, which is also likely to fail.

-h Suppress printing of header information on code lines. Header

information includes the offset of the code and the code bytes in
hex and ASCII. The default is to print header information.

This option is useful in producing code that can be edited and
submitted to the Assembler for reassembly.

DumpOb} 269

Exampie

270

-} Print file locations of object records. The default is not to print

these locations.

` This option is useful in debugging compilers and assemblers,

particularly when debugging code used to generate Pad records to

assure alignment. (See Appendix H, “Object File Formar”)

-m name Dump a particular module. If name is an entry point, then the

module containing name is dumped. Other options that control

format still have an effect.

Note: name is case sensitive, as are all object file identifiers.

-n Print names only. When this option is specified, only the -p option

has an effect.

This option is useful in determining which names are defined in an

object file, particularly when there appears to be a discrepancy in

spelling, capitalization, or length of identifiers.

-p Write progress information (such as the name of the file being

dumped and the version of DumpObj) to diagnostic output.

-r byte ll, byteN| Limit the disassembly of code to the range bytel...byteN. The

default is to disassemble all bytes in a segment. If byteN is omitted,

then the rest of the segment is disassembled.

DumpOb3 Sample.p.o >SampleDump

Formats the file Sample.p.o and writes its contents to the file SampleDump. This

output has the following format:

Dump of file sample.p.o

First: Kind 0 Version 1

Dictionary: FirstId 2

2: Main

Pad

Module: Flags $00 ModuleId 1 SegmentId Main

Content: Flags $00

Contents offset 0000 size 006A

000000: 4E56 FFFE 'NV..! LINK A6, #SFFFE

000004: 2F07 Efi MOVE.L D7,-{A7)

000006: 42A7 Bia. CLR.L -= (A7)

000008: 3F3C 0080 BPS MOVE.W #$0080, -(A7)

etc.

For more information, see Appendix H, “Object File Format.”

DumpOb]}

See also DumpCode command

Appendix H, “Object File Format”

DumpObj 271

Syntax

Description

Input

Output

Diagnostics

Status

Options

Duplicate — duplicate files and directories

Duplicate {-y | -n] [-d | -r] [-p] name.. targetName

Duplicate name to targetName. (Name and targetName are file or directory

names.) If targetName is a file or doesn’t exist, then the file or directory name is

duplicated and named targetName. If targetName is a directory, then the objects

named are duplicated into that directory. (if more than one name is present,

targetName must be a directory.) Created objects are given the same creation and

modification dates as their source.

If a directory is duplicated, then its contents Cincluding all subdirectories) are also

duplicated. No directory duplicated can be a parent of targetName.

Name can also be a volume; if targetName is a directory, then name is copied into

targetName.

A dialog box requests a confirmation if the duplicate would overwrite an existing file

or folder. The -y or -n options can be used in command files to avoid this

interaction.

None.

None.

Progress and summary information is written to diagnostic output if the -p option is

specified.

The following status codes are returned:

0 All objects were duplicated
1 . Missing or inaccessible parameters

2 An error occurred

-y Answer “yes” to any confirmation dialog that occurs, causing

conflicting files or folders to be overwritten.

-n Answer “no” to any confirmation dialog that occurs, skipping files

or folders that already exist.

272 Duplicate

Examples

Limitations

See also

-d Duplicate the data fork only. If targetName is an existing file, its
-data fork is overwritten and its resource fork remains untouched.

-r Duplicate the resource fork only. If targetName is an existing file,
its resource fork is overwritten and its data fork remains untouched.

-p List progress information.

Duplicate Aug86 "Monthly Reports”

Assuming “Monthly Reports” is an existing directory, duplicate the file Aug86 into
that directory.

Duplicate Filel Folderl "Backup Disk:"

Duplicate File1 and Folder! (including its contents) onto Backup Disk.

Duplicate ~y Filel File2

Duplicate Filei to File2, overwriting File2 if it exists.

Duplicate Diskl:= HD:Files:

Duplicate all of the files on Disk1 into the directory HD:Files.

Duplicate Diskl: HD:Files:

Duplicate all of Disk1 (as a directory) into HD:Files.

Duplicate doesn't recognize folders on non-HFS disks.

Move and Rename commands

“File and Window Names” in Chapter 1

“Filename Generation” in Chapter 3

Duplicate

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

274 Echo

et
—oaoOoOEOoOoaoaoEaEaEaEaEaEaEeEyEeE~y~—eyeax>E~E>~_~_===EE>~=_=_=_—_—L—L—>FE>E>R9E»wRmmuAm»

>=»mA»ama_

Echo — echo parameters

Echo [-n] { parameters ... }

Writes its parameters, separated by spaces and terminated by a return, to standard

output. If no parameters are specified, only a return is written.

Echo is especially useful for checking the results of variable substitution, command

substitution, and filename generation.

None.

Parameters are written to standard output

None.

Status value 0 is always returned.

-n Don’t write a return following Echo's parameters (that is, the

insertion point remains at the end of the output line). The -n isn’t

echoed.

Echo "Use Echo to write progress info from command files."

Use Echo to write progress info from command files.

The Echo command above writes the second line to standard output

Echo. {Status}

Writes the current value of the {Status} variable; that is, the status of the last command

executed.

Echo ~.a

Echoes the names of all files in the current directory that end with “.a”. (This might

be useful as a precaution before executing another command with the argument
*~ 4a”)

E

Echo -~-n > EmptyFile

If EmptyFile exists, this command deletes its contents; if the file doesn’t exist, it is
created.

See also Parameters command

Echo 275

————— A M

Eject — eject volumes

Syntax Eject [-m] volume...

Description Flushes the volume, unmounts it, and then ejects it, if it is a floppy disk. A volume

name must end with 2 colon G). If volume is a number without a colon, it's

interpreted as a drive number.

Note: If you unmount the current volume (the volume containing the current

directory), the boot volume becomes the current volume. You can keep the volume

mounted with the -m option. (See the ‘File Manager” chapter of Inside Macintosh.)

input None.

Output None.

Diagnostics Errors are written to diagnostic output.

Status The following status codes are returned:

O The disk was successfully ejected

1 Syntax error

2 An error occurred

Options -m Leave the volume mounted.

Examples Eject Memos:

Eject (and unmount) the disk titled Memos.

Eject 1

Eject and unmount the disk in drive 1 (the internal drive).

See also Mount, Unmount, and Volumes commands

276 Eiect

Syntax

Description

SN

Input

Output

Diagnostics

Status

Options

Entab — convert runs of spaces to tabs |

`- Eníab [option ...1 (file...}

Copies the specified text files to standard output, replacing runs of spaces with tabs.
The default behavior of Entab is to do the following:

1. Detab the input file using the file’s tab setting (a resource saved with the file
by the Shell editor), or 4 if there is none. You can override this “detab” value with
the -d option.

2. Then entab the file, setting tab stops every 4 Spaces. You can specify another tab
setting with the -t option. The entabbed output file looks the same as the Original
file(s), but contains fewer characters.

Options are also provided for controlling the processing of blanks between quoted
strings. ; i

If no filenames are specified, standard input is processed.

Al files are written to standard output.

Parameter errors and progress information (with the -p option) are written to
diagnostic output.

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or option error
2 - Execution terminated

-d tabSetting Override the input file’s default tab setting with tabSetting. This
option is useful for detabbing non-MPW files.

Note: Entab’s default action is to detab the input file, using the
file’s tab setting, or 4 if there is none. For MPW files, specifying a -d
option would override the file’s own tab setting, leading to incorrect
results if a different value were used.

Entab 277

-P

-q quote...

-r quote...

-t tabSetting

Specify a list of left quote characters. Quote... is a string of one or

more nonblank characters. If -l is specified, then -r must also be

specified. Single quotes C) and double quotes (") are assumed as the

default quoting characters.

Treat all quotes as “normal” characters—entab the file, replacing

runs'of spaces embedded in quoted strings with tabs.

Caution: This option should not be used when entabbing program

source files. If this option is used, the -q, -l and -r options are

ignored.

Write version and progress information to diagnostic output

Specify a list of characters to be used as both left and right quotes.

Quote... is a string of one or more nonblank characters. This is the

default option; single quotes (‘) and double quotes (") are assumed

as the quoting characters.

Specify a list of right quote characters. Quote... is a string of one or

more nonblank characters. If -r is specified, then -1 must also be

specified.

Note: Entab does not check that a particular left quote character

matches a particular right quote character.

Set the output file’s tab setting to tabSetting. If the -t option is

omitted, 4 is assumed for the tab setting, If you specify a tab setting

of 0, no tabs are placed in the output. Thus -t 0 may be used to

completely detab input files.

Caution: If you specify the -q, -L or -r options, then you should quote the entire

string parameter to these options (otherwise, the Shell may misinterpret special

characters in the parameter string).

Example Entab -t 2 Example.p > CleanExample.p

Detab the file Example.p (using the file’s default tab setting), re-entab it with a tab

setting of 2, and write the resulting output to CleanExample.p.

Caution: Beware of command formats such as

Entab Foo > Foo

Limitations Entab does not take into account embedded formatting characters except for tab

characters. Thus backspace characters may cause incorrect results.

278 Entab

PTN

See also

The maximum width for an input line is 255 characters.

Tab command

279

SS e
ee
 eee

Equal — compare files and directories

Syntax Equal | option...] name... targetName

Description Compares name to targetName. By default, Equal makes no comment if files are the

same; if they differ, it announces the byte at which the difference occurred. When

comparing directories, the default condition is to report all differences, including

files not found—the -i option ignores files in targetName that are not present in

name.

If targetNameis a file, every name must also be a file. The specified files are

compared with targetName.

If targetName is a directory and name is a file, Equal checks in targetName for the

file name and compares the two files. That is, the command

Equal Filel Dirl

compares File} with :Dirl:File1.

If more than one name is specified, Equal compares each name with the

corresponding file or directory in targetName (all subdirectories are also

compared). The command

Equal Filel Dirl Dir2

compares Filel with :Dir2:File] and then compares Dirl with :Dir2:Dir1.

If targetName is a directory, name is a directory, and only one name is specified,

then the Equal command directly compares the two directories. That is, the

command

Equal Dirl Dir2

compares Dirl (and all subdirectories) with Dir2.

Input None.

Output Differences are written to standard output.

Diagnostics Errors are written to diagnostic output.

280 Equal

7 ̀

Status

Options

Examples

See also

The following status codes are retumed:

0 Identical files
l Syntax error `
2 Inaccessible or missing parameter
3 Files not equal

-i Ignore files missing from directory name, that is, if files in targetName are not present in name, Equal won't report the missing files as differences,

-d Compare the data forks only.

-r Compare the resource forks only.

-p List progress information as files are compared,

-q Remain quiet about differences; return status codes only.

Equal Filei FilelBackup
Report if the files are different and at what point they differ, in a message such as:
Filel FilelBackup differ in data fork, at byte 5

Equal -i HD:Diri Diskl;Dirl
Compare ail files and directories in HD:Dirl with files and directories with the same names found in Disk1:Dirl, and report any differences. This command does not report files in Disk1:Dirl that aren't found in HD:Dir1.

Equal ~i -d Backup: HD:Source
Compare the data forks of all files on the volume Backup: with all those of the same name in the directory HD:Source.

Equal -p Old:=.e¢ HD: Source
Compare all files on Old: ending in .c with their counterparts in HD:Source. Print Progress information as the comparison proceeds.

Compare command (Compare is a more elaborate tool that writes two text files’ differences to standard output.)

Equal 281

Syntax

Description

input

Output

Diagnostics

Status

Options

Examples

282 Erase

Dns

Erase — initalize volumes

Erase [-y] [-s] volume...

Initializes the specified volumes-— the previous contents are destroyed. A volume

name must end with a colon C). If volume is a number without a colon, it’s

interpreted as a disk drive number.

A dialog box requests confirmation before proceeding with the command, unless the

-y option is specified. The -y option can be used in command files to avoid this

interaction.

None.

None.

Errors are written to diagnostic output.

The following status codes are returned:

0 Successful initialization

1 Syntax error
2 No such volume, or boot volume

3 Errors during the initialization procedure

-y Answer “yes” to the confirmation dialog, causing initialization to

begin immediately.

-$ Format the disk for single-sided use (that is, as a 400K, non-HFS

disk).

Erase Reports:

Initialize the volume titled Reports.

Erase 1

Initialize the volume in drive 1 (the internal drive). It will be formatted as a 400K disk if

drive 1 is a 400K drive, or as an 800K disk if drive 1 is an 800K drive.

fd me

Syntax

Description

888 SS LESSEE ere ee

Evaluate — evaluate an expression

Evaluate [word...]

The list of words is taken as an expression. After evaluation, the result is written to
standard output. Missing or null parameters are taken as zero. You should quote string
operands that contain blanks or any of the characters listed in the table below.
The operators and precedence are mostly those of the C language; they're described
below.

Expressions. An expression can include any of the following operators. (In some
cases, two or three different symbols can be used for the same operation.) The
Operators are listed in order of precedence—-within each group, Operators have the
same precedence.

Operator Operation

1. (epr) Parentheses are used to group expressions,
2. -= Unary negation

x Bitwise negaton
! NOT = Logical NOT -

3 Multiplication
+ DIV Division
% MOD Modulus division

4, + Addition
- Subtraction

5. << Shift left
>> Shift right

6: < Less than
<= $s Less than or equal
> Greater than
>=. 2 Greater than or equal

7. == Equal
{= <> + Not equal
a Equal—regular expression
l~ Not equal—regular expression

8. & Bitwise AND
9. A Bitwise XOR
10. | Bitwise OR
11. && AND Logical AND
12. I} OR Logical OR

Evaluate 283

Input

Output

Diagnostics

Status

Examples

All operators group from left to right. Parentheses can be used to override the

operator precedence. Null or missing operands are interpreted as zero. The result of

an expression is always a string representing a decimal number.

The logical operators 1, NOT, ~, &&, AND, | |, and OR interpret null and zero

operands as false and nonzero operands as true. Relational operators return the value

1 when the relation is true, and the value 0 when the relation is false.

The string operators =~, !=, =~, and !~ compare their operands as strings. All others

operate on numbers. Numbers may be either decimal or hexadecimal integers

representable by a 32-bit signed value. Hexadecimal numbers begin with either $ or

Ox. Every expression is computed as a 32-bit signed value. Overflows are ignored.

The pattern-matching operators =~ and !~ are like == and != except that the right-

hand side is a regular expression which is matched against the left-hand operand.

Regular expressions must be enclosed within the regular expression delimiters /.../.

Regular expressions are summarized in Appendix B.

Note: There is one difference between using regular expressions after =~ and !~ and

using them in editing commands—-when evaluating an expression that contains the

tagging operator, ®, the Shell creates variables of the form (®m}, containing the

matched substrings for each ® operator. (See the examples below.)

Filename generation, conditional execution, pipe specifications, and input/output

specifications are disabled within expressions, to allow the use of many special

characters that would otherwise have to be quoted.

Expressions are also used in the If, Else, Break, Continue, and Exit commands.

None.

The result of the expression is written to standard output Logical operators return the

values 0 (false) and 1 (true).

Note: To redirect Evaluate’s output (or diagnostic output), you'll need to enclose the

Evaluate command in parentheses; otherwise, the > or 2 symbols will be interpreted

as expression operators, and an error will occur. (See the third example below.)

Errors are written to diagnostic output.

The following status values are returned:

0 Valid expression

1 Invalid expression

Evaluate (1+2) * (3+4)

Do the computation and write the result to standard output.

284 Evaluate

Set lines “Evaluate {lines} + 1°

The Set command increments the value of the Shell variable {lines]}—the Evaluate command enclosed in command substitution characters C...) is replaced by its output.

(Evaluate “{aPathname}" =~ /{ ((-:]+:)*)@le/) > Dev:Null Echo {®1}

These commands examine a pathname contained in the variable {aPathname}, and return the directory prefix portion of the name. In this case, Evaluate is used for its side effect of enabling regular expression processing of a filename pattern. The right- hand side of the expression (/ (((~:]+:) *)@1=/) is a regular expression that matches everything in a pathname up to the last colon, and remembers it as the Shell variable {@1), Evaluate’s actual output is not of interest, so it’s redirected to the bit bucket, Dev:Null. (See “Pseudo-filenames” in Chapter 3.) Note that the use of /O redirection means that the Evaluate command must be enclosed in parentheses so that the output redirection symbol, >, is not taken as an expression operator.
This is a complex, but useful, example of implementing a “substring” function. For a similar example, see the Rename command.

See also “Structured Commands” in Chapter 3
“Pattern Matching (Using Regular Expressions)” in Chapter 4 and Appendix B

Evaluate 285

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See aiso

ee

Execute — execute a command file in the current

scope i

Execute commandFile

Execute the command file as if its contents appeared in place of the Execute

command. This means that variable definitions, exports, and aliases in the

command file will continue to exist after it has finished executing. (Normally these

definitions, exports, and aliases would be local to the command file.) Any

parameters following commandfFile are ignored. Any parameters to the enclosing

command file are available within commandFile.

Note: If commandFile is not a command file (that is, if it’s a built-in command,

tool, or application), the command is run as if the word Execute did not appear.

Parameters are passed to the command as usual.

None.

None.

None.

Execute returns the status returned by commandFile.

Execute "{ShellDirectory} "Startup

Execute the Startup (and UserStartup) command files. This command is useful for

testing any changes you've made to the Startup-UserStartup script. Variable

definitions, exports, and aliases set in Startup and UserStartup will be available after

Startup is done executing.

“Defining and Redefining Variables” in Chapter 3

“The Startup and UserStartup Files” in Chapter 3

286 Execute

Syntax

Description

input

Output

Diagnostics

Status

Examples

(See also

fo ™

SESS
a]

Exit — exit from command file

Exit [status} [If expression]

If the expression is nonzero (that is, true), Exit terminates execution of the command
file in which it appears. When used interactively, Exit terminates execution of
Previously entered commands. Status is a number, if present, it is returned as the
status value of the command file; otherwise, the status of the previous command is
returned. If the “If expression” is omitted, the Exit is unconditional. (For a definition
of expression, refer to the description of the Evaluate command.)

None.

None.

Errors are written to diagnostic output.

If status is present, it is returned as the status value of the command file. If the
expression is invalid, 1 is returned. Otherwise, the status of the last command
executed is retumed.

Exit {ExitStatus}

As the last line of a command file, this Exit command would retum as a status value
whatever value had previously been assigned to {ExitStatus}.

Evaluate command (for information on expressions)
“Structured Commands’ in Chapter 3

{Exit} and {Status} variables, in “Variables,” Chapter 3

Exit 287

Syntax

Description

input

Output

Diagnostics

Status

Examples

See also

288 Export

Export — make variables available to commands

Export [name...]

Make the specified variables available to command files and tools. The list of

variables exported within a command file is local to that command file. An enclosed

command file or tool inherits a list of exported variables from the enclosing
command file. (See Figure 3-1 in Chapter 3 for clarification.)

Note: You can make a variable available to all command files and tools by setting

and exporting it in the Startup or UserStartup files. (Startup acts as the enclosing

command file for al! Shell operations.)

If no names are specified, a list of exported variables is written to standard output.

(Note that the output of Export is in the form of Export commands.)

None.

If no parameters are given, Export writes a list of exported variables to standard

output.

None.

Export always retums a status value of 0.

Set AIncludes "{MPW}AIncludes:”"

Export AlInciludes

Define the variable {AIncludes} as the pathname "(MPW}Alncludes:", and make it

available to command files and programs.

Set and Execute commands

“The Startup and UserStartup Files” in Chapter 3

“Exporting Variables” in Chapter 3

ott,

a

a i

Syntax

Description

input

Output

Diagnostics

Status

Options

FileDiv — divide a file into several smaller files

FileDiv [-f} [-n spiitpoint] {-p} file { prefix]

FileDiv is the inverse of the Catenate command. It is used to break a large file into ; several smaller pieces. The input file is divided into smaller files, each containing an equal number of lines determined by the splitpoint (default=2000). The last file contains whatever is left over.

There is also an option C for splitting a file only when a form feed character (ASCH $0C) occurs as the first character of a line that is beyond the splitpoint This option lets you split a file ai points that are known to be the tops of pages.
Each group of spiitpoint lines is written to a file with the name prefixNN, where NN is a number starting at 01. If the prefix is omitted, the input file name is used as the prefix.

An input file must be specified in the command line. Standard input is not used.

FileDiv creates files with names of the form DrefixNN, where NN is a number. (f prefixis omitted, the input filename is used as a prefix.) Standard output is not used.

Parameter errors and progress information are written to diagnostic output.

The following status codes are returned to the Shell:

0 Normal termination
l Parameter or option error
2 Execution terminated

-f Split the input file only when at least splitpoint lines have been
writen to the current output file avd there is a form feed character
(ASCH $0C) as the first character of a line. The line containing the
form feed becomes the first line in the next output file.

-2 Splitpoine Split the input Sle into groups of spiitpoint lines (or, if the -f option
was specified, spiitpoint or more lines). If the -n Option is omitted,
2000 15 assumed.

FileDiv 289

-p Write version information and progress information to diagnostic

output.

Example FileDiv ~-f -n 2500 Bigfile

Split Bigfile into files of at least 2500 lines, split the file at points where there are form

feed characters. The output files have the names BigfileNN, where NN is 01, 02, and

so on.

Limitations The maximum length of an input line is 255 characters.

290 FileDiv

Syntax

Description

Input

Output

Diagnostics

Status

Options

M aa

Files — list files and directories

Files [optton...] [name...]

For each disk or directory named, Files lists its contents; for each file named, Files
writes its name and any other information requested. Information is written to
standard output. By default the output is sorted alphabetically. If no name is given,
the current directory is listed.

None.

File information is written to standard output.

Errors and warnings are written to diagnostic output.

The following status codes are returned to the Shell:

O All names were processed successfully
1 Syntax error

2 An error occurred

-c creator List only those files with the given file creator.

-l List in long format, giving name, type, creator, size, attributes,
modification date, and creation date. i
The attributes listed under the -1 option consist of the following
characters:

L Locked
v Invisible
B Bundle
S System
P Protected
O Open
I Inited
D (on) Desktop

Uppercase letters indicate a value of 1, lowercase a value of 0. See
the "File Manager” chapter of Inside Macintosh for information.

Files 29)

-q Don’t quote names in the output. (Normally, the Files command

quotes names that contain spaces or special characters.)

-r Recursively list subfolders encountered; that is, list every file in

every directory.

-t type List only those files with the given file type.

Examples Files {MPW} -t TEXT

List all files of type TEXT in the {MPW} directory. (

Files -1 "MPW Shell”

Write “long” output such as

Name Type Crtr . Size Flags Last-Mod-Date Creation~Date

MPW Sheli APPL MPS 166K livBspotd 8/8/86 4:51 PM 8/8/86 4:52

PM

292 Files

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

Find — find and select a text pattern

Find [-c count] selection { window }

Create a selection in window. If no window is specified, the target window (the
second window from the top) is assumed. It’s an error to specify a window that doesn't
exist

Selection is a selection as defined in Chapter 4 and in Appendix B.
Note: Searches do not necessarily start at the beginning of a window—a forward
search begins at the end of the current selection and continues to the end of the
document. A backward search begins at the start of the current selection and
continues to the beginning of the document

All searches are case insensitive by default. You can specify case-sensitive searches by
first setting the Shell variable {CaseSensitive} to 2 nonzero value. (You can
automatically set {CaseSensitive} by selecting the Case Sensitive item from the Find
menu.) i

None.

None.

None.

The following status codes are returned:

0 At least one instance of the selection was found
1 Syntax error

2 Any other error

-c Count For a count of n, find the sh occurrence of the selection.

Find +

Position the insertion point at the beginning of the target window.

Find -c 5 /procedure/ Sample.p

Select the fifth occurrence of “procedure” in the window Sample.p.

Find 293

See also

294 Find

Find 332

Select line 332 in the target window.

“Selections” and “Pattern Matching” in Chapter 4

“Find Menu” in Chapter 2

HON,

Syntax

Description

Input

Output

Diagnostics

Status

Examples

Font — set font characteristics

Font fontname fontsize | window]

Change the font family and point size of all text in window to fontname and fontsize. Both fontname and fontsize are required. It’s an esror.to specify a window that doesn't exist. If no window is specified, the command operates on the target window (the second window from the top).

None.

None.

Errors are written to diagnostic output.

Font returns the following status values:

0 Successful completion
1 Error in parameters
2 An illegal fontname or fontsize was specified

Font Monaco 12

Change the font of the target window to Monaco 12 point.

Font 295

Syntax

Description

Input

Output

Diagnostics

Status

Examples

296 For...

eee ooo SS SSS SSSEE>E=—__=_
> _ SSE S*==[=[S=SEooo—oEE——EEy——— ee ee—

For... — repeat commands once per parameter

Executes the list of commands once for each word from the “In word...” list. The

current word is assigned to variable name, and you can therefore reference it in the

list of commands by using the notation {mame}. Return characters must appear at the

end of each line as shown above, or they can be replaced with semicolons G).

The Break command can be used to terminate the loop. The Continue command can

be used to terminate the current iteration of the loop.

The pipe specification (|), conditional command terminators (&& and | |), and

input/output specifications (<, >, >>, 2, and 22) may appear following the End,

and apply to all of the commands in the list.

None.

None.

Errors are written to diagnostic output.

For returns the following status values:

O The list of words or list of commands was empty
1 There was an error in the parameters to For

Otherwise, the status of the last command executed is returned.

For i In 1 2 3

Echo i = {i}

End

Returns the following:

i

2

3

i

i

i

wo

See aiso

For File In =.c

C "{File}" ; Echo "{File}" compiled.
End

This example compiles every file in the current directory whose name ends with the
suffix “.c*. The Shell first expands the filename pattern ~. c, creating a list of the filenames after the "In" word. The enclosed commands are then executed once for
each name in the list. Each time that the loop is executed, the variable {File}
represents the current word in the list. {File} is quoted because a filename could
contain spaces or other special characters.
For file in Startup UserStartup Suspend Resume Quit

Entab "{file}" > temp
Rename -y temp "{file}"
Print -h "{file}*"

Echo "{file}*

End
Bo

This example entabs (replaces multiple spaces with tabs) the five files listed, prints
them with headings, and echoes the name of each file, after printing is complete. You
might want to use this set of commands before making copies of the files to give to a
friend. Entabbing the files saves considerable disk Space, and printing them gives you
some quick documentation to go with the files.

Loop, Break; and Continue commands

“Structured Commands” in Chapter 3

For... 297

Syntax

Description

Input

Output

Diagnostics

298 Help

ee

e-

Help — display summary information

Help I -f keipFile) | command... |

Help writes information about the specified commands to standard output. If no

command is specified, information about Help is written to standard output.

Command can include any of the following:

commandName

commands

expressions

patterns

selections

characters

information about commandName
a list of all MPW commands

a summary of expressions

a summary of pattern specifications (regular

expressions)
a summary of selection operators

a summary of MPW Shell special characters

By default, the Help command looks for information in the file MPW.Help. It looks

for this file first in {Shell Directory}; if it isn’t found, it looks in {System Folder}.

The following syntax notation is used to describe Macintosh Workshop commands:

[optional] Square brackets mean that the enclosed elements are optional.

repeated... Ellipses indicate that the preceding item can be repeated one or more

times.

alb A vertical bar indicates an either/or choice:

(grouping) - Parentheses indicate grouping (useful with * | 7 and *...”).

< input

> output

2 progress

None.

Command info

None.

If input is not specified, the command reads from standard

input.

The command writes to standard output.

Progress information is written to diagnostic output (with the

-p option).

rmation is written to standard output

aah

AN

Status

- Options

Exampie

The following status codes are returned:

given command

Specify help file to be searched, (A help file is an ordinary MPW
text file.) The default file is MPW.Help.

Q Information could be found for the
1 Syntax error

2 A command could not be found, or error in parameters
3 The help file could not be opened

-f helpFile

Help Rez

Writes information such as

Rez {option..] [file] < file 2 progress
-¢{reator] creator
-d{efine] name [=yalue]
-o file

-p
-rd

-ro

-t [ype] type
-uf{ndef] name

Mk k ak aie i k e ak

set output file creator
equivalent to #define Macro [value]
write output to file (default Rez. Out)
write progress information to diagnostic
Suppress warnings for redeclared types
set the mapReadonly flag in output
set output file type
equivalent to #undef name

Help 299

Syntax

Description

Input

Output

Diagnostics

Status

Exampies

300 f..

if... — conditional command execution

-Executes the list of commands following the first expression whose value is nonzero.
(Null strings are considered zero.) At most one list of commands is executed. You
may specify any number of “Else If clauses. The final Else clause is optional. The
Return characters must appear at the end of each line as shown above, or they can be
replaced with semicolons (,).

The pipe specification (|), conditional command terminators (&& and | |), and
input/output specifications (<, >, >>, 2, and 22) may appear following the End
word, and apply to all of the commands in the list.

For a definition of expression, see the description of the Evaluate command.

None.

None.

Errors are written to diagnostic output.

If none of the lists of commands is executed, the If command returns a status value

of 0. Otherwise, it returns the value returned by the last command executed.

If {Status} == 0

Beep la,25,200

Else

Beep -3a,25,200

End

Produce an audible indication of the success or failure of the preceding command.

See also

For window in *Windows*
If "{window}" ta » {Worksheet}" AND * {window}"-!t= * {Active} Close "{window}"
End

End

Close all of the open windows except the active window and the Worksheet window. (Refer also to the Windows command.)

The following commands, as a command file, would implement a trivial case of a general “compile” command:

I£ "{1}" =~ f/m lo/
C {COptions} "{1}"

Else If "{1}" =~ /m.p/
Pascal {POptions} "{1}"

End

If the above commands were saved as a command file (say, as “Compile”), both C and Pascal programs could be compiled with the command -
Compile Alename

Evaluate command (for a description of expressions)
“Structured Commands’ in Chapter 3

If... 301

Syntax

Description

Input

Output

302-

EE
E

Lib — combine object files into a library file

Lib [option...]. objectFile ...

Combines the specified object files into a single file. By convention, input files end in

the suffix .o, which must be present. In addition, input files must have type 'OBJ ' and

creator 'MPS '.

Lib is used for the following:

m Combining object code from different languages into a single file.

n Combining several libraries into a single library, for use in building a particular

application or desk accessory. This can greatly improve the performance of the

Linker.

m Deleting unneeded modules (with the -dm option), changing segmentation (the

-sg and -sn options), renaming external modules (the -mn option), or changing

the scope of a symbol from external to local (the -dn option). (These options are

useful when you construct a specialized library for linking a particular program.)

Object files that have been processed with Lib result in significantly faster Links when

compared with the “raw” object files produced by the Assembler or Compilers.

The output of Lib is logically equivalent to the concatenation of the the input files,

except for the optional renaming, resegmentation, and deletion operations, and the

possibility of overriding an external name. The resolution of external names in Lib is

identical to Link—in fact, the two programs share the same code for reading object

files, Although multiple symbols are reduced to a single symbol, no combining of

modules into larger modules is performed, and no cross-module references are

resolved. This behavior guarantees that the Linker’s output will be the same size

whether or not the output of Lib was used.

See “Library Construction” in Chapter 7 for a detailed discussion of the behavior and

use of Lib.

Lib does not read standard input.

Lib does not write to standard output. The combined library output is placed in the

data fork of the output library file. The default output file is Lib.Out.o—you can

specify another name with the -o option. The output file is given type ‘OBJ ' and

creator 'MPS '.

(

Diagnostics

Status

Options

Errors and warnings are written to diagnostic output. Progress information is also
written to the diagnostic file if you specify the -p option.

Lib returns the following status values:

0 No problem
2 Fatal error

3. User interrupt

-b

-bf

-d

-df deleteFile

Do a big execution of Lib, that is, -bf and -bs 4 options.

Allow a big number of files; that is, keep only one input file open at
a time. If Lib fails with a “too many files open” message, use this
option.

Set the buffer size for input to nn blocks (512 bytes each). If Lib fails
with a “heap error’ or “out of memory” message, try this option.
Values for nn must be between 2 and 64. (The default is 16.)
Note: Numeric values can be specified as decimal constants, or as
hex constants preceded by a “$”.

Suppress warnings for duplicate symbol definitions (data and
code).

Delete the list of external modules found in deleteFile. DeleteFile is
a text file generated by the Linker option -uf. See the Link command
and “Library Construction” in Chapter 7 for information.

-dm name {name ...)

“Delete Module”—delete the specified external modules from the
output file. name may be either an external module or entry-point
name. For each entry point mame, the entire module containing
the entry point is deleted, together with all other entry names in the
module. The contents of the module and all entry points are
removed from the output file.

Note: References to names deleted in this way will persist as
references “by name.” That is, if the references are from active
code, they'll need to be resolved by external modules or entry
points in another file.

The primary use of this operation is to make the library file smaller,

so subsequent links are faster. You can use the Linker option -uf,
which lists unreferenced (“dead”) modules or entry points, to
generate a list of names that can be deleted in this way.

Ub 303

Examples

See also

304 Lib

-dn name (,name ...|

“Delete Name”—delete the list of external names from the output

file, by reducing their scope to local. -dn is a “gentle” deletion, in

that it affects only the list of external module or entry-point names.

The contents of the module, other entry points, references, and so

on will still be present in the output file. References to names

“deleted” in this way will continue to refer to the same code, but

with local scope. This is a useful operation when a global name

conflict occurs between two pieces of code, one of which is library

code from which you don’t need to call the name directly.

-mn oldName=newName

Change the module or entry point named oldName to the name

newName. See the -ma option of the Link command for a

description of a similiar option.

-0 name.o Place the output in file name.o. (The default name is Lib.Out.o).

-p Write progress and summary information to diagnostic output.

-sg newSeg=oldSeg Il, oldSeg2 |...

Change segment names. Ali code in the old segments named

oldSeg 1, oldSeg2,... is placed in the segment named newSeg.

-sn oldSeg=newSeg
Change a segment name. All code in the segment named oldSeg is

placed in the segment named newSeg.

Note: The -sn and -sg options behave exactly as in Link, except

that -sn is limited to identifiers on both sides of the equal sign. The

arbitrary string for a. desk accessory name can be introduced only

with Link, not with Lib. The major difference berween -sn and -sg is

that the order of the option parameters oldSeg and newSeg is

reversed. (This is done for consistency with Link.)

-W Suppress warning messages.

Lib {CLibraries}= -o {CLibraries}CLibrary.o

Combine all of the library object files from the {CLibraries} directory into a single

library named CLibrary.o. For applications that require most or all of the C library

files, using the new CLibrary file will reduce link time.

Link, DumpObj, and DumpCode commands

“Optimizing Your Links” and “Library Construction” in Chapter 7

Appendix H, “Object File Format’

Lib

Syntax

Description

Input

306

Link — link an application, tool, or resource

Link [option...] objectFile...

Links the specified object files into an application, tool, desk accessory, or driver.

The input object files must have type 'OBJ ' and creator 'MPS ', and must end in the

suffix “.o”. Linked segments from the input object files are placed in code resources

in the resource fork of the output file. The default output file name is Link.Qut—you

can specify other names with the -o option.

For detailed information about the Linker, and instructions for linking applications,

MPW tools, and desk accessories, see Chapter 7.

The Linker’s default action is to link an application, placing the output segments into

‘CODE’ resources. When you link an application, all old 'CODE' resources are deleted

before the new ‘CODE! resources are written. By default, resources created by the

Linker are given resource names that are the same as the corresponding segment

names. You can change a resource (segment) name with the -sn or -sg options; you

can create unnamed resources with the -ra option. ,

The Linker executes in three phases:

1. Input phase: The Linker reads all input files, finds all symbolic references and

their corresponding definitions, and constructs 2 reference graph. Duplicate

references are found and warnings are issued.

2. Analysis phase: The Linker allocates and relocates code and data, detects missing

references, and builds the jump table. If the -1 or -x options are given, the Linker

produces a linker map or cross-reference listing. The Linker also eliminates

unused code.

3, Output phase: The Linker copies linked code segments into code resources in the

resource fork of the output file. By default, these resources are given the same

names as the corresponding segment names. (The cursor spins backward during

this phase.)

Link does not read standard input.

f~

Output

Diagnostics

Status

Options

By default, linked segments are placed in 'CODE' resources in the resource fork of the Output file. The default output file name is Link.Out—you can specify other names with the -o option. If the output file already exists, the Linker adds or replaces code segments in the resource fork. If the output file doesn’t exist, it is created with file type APPL and creator '??2?', The -t and -c options can be used to set the output file type and output file creator to other values.

Note: If a Linker error or user interrupt causes the output file to be invalid, then the Linker sets the modification date on the file to “zero” Gan. 1, 1904, 12:00 a.m.). This guarantees that Make will recognize that the file needs to be relinked.
If you specify the -l option, the Linker writes a location map to standard output. The map is produced in location ordering, that is, sorted by segNum, segOffset. The format is divided into several fields:

name segName segNum, segOffet | @/TOfset} [#1 [E] [fileNum, defOffset |
See Chapter 7 for more information.

Errors and warnings are written to diagnostic output. Progress information is also written to diagnostic output if the -p option is specified.

The following status values are. retumed:

0 No problem
2 Fatal error

3 User interrupt

Note: Numeric values for options can be Specified as decimal constants, or as hex constants preceded by the dollar sign character ($).

-b Do a big link; that is, do both -bf and -bs 4 options.

-bf Allow a big number of files; that is, keep only one input file open at
a time. If a link fails with a ‘too many files open” message, use this
option.

-bs blocks Set the buffer size for the Linker to blocks blocks (512 bytes each). If
a link fails with a “heap error” or “out of memory” message, try this
option. Values for blocks must be between 2 and 64. (The default
is 16.)

-c creator Set the output file creator to creator. The default creator is 2222"

-d Suppress warnings for duplicate symbol definitions (for data and
code).

Link 307

-da Convert segment names to desk accessory names on output. Desk

accessory names begin with a leading null character ($00). This

option is used when linking assembly-language code into a final

desk accessory (resource type 'DRVR).

-1 Write a location-ordered map to standard output. Usually, this

option will be used with output redirection in effect. For example,

Link ObjFile -1 > MyMapFile

-la List anonymous symbols in the location map (with the -1 option).

The default is to omit anonymous symbols from the map.

-If In the location map data (-I option), include the location where

symbols are defined in the input file, that is, the file number and

byte offset of the Module or Entry-Point record. See Appendix H,

“Object File Format,” for more details.) The default is to omit the

symbol definition location.

-m mainEntry — Set (or override) the main entry point specified in the object files.

MainEntry is a module or entry-point name.

Note: For an application or MPW tool, the main entry point is

assigned the first jamp-table entry, as required by the Segment

Loader. If a main entry point is specified for a desk accessory,

driver, or other type of link, for purposes of using the Linker’s

active-code analysis feature, then the main entry point should be

the first byte of code in the first Linker input file. (A desk accessory

has no jump table.)

-ma name=alias “Module alias"—give the module or entry-point name the new

name altas. This option lets you resolve undefined external

symbols at link time, when the problem is caused by differences in

spelling or capitalization. Note that you can’t use an alias

specification to override an existing module or entry point

Note: You can alias aliases, as long as the chain of aliases is not

circular.

-o outputFile Place the Linker output in outputFile. If no -o option is specified, the

default output filename is Link.Out.

-p Write progress and summary information to diagnostic output.

308 Link

-ra [segl=nn

-rt type= ID

Set the resource attributes of a segment or segments. If seg is

specified, the single segment named segis given the attribute value

nn. If segis omitted, then all segments except 0 and 1 are given the

attribute value nn. Qf you intend to set the attributes of all segments,

then you must specify this option before any other options that

name segments, such as -sn and sg.) The segment containing the

main entry point (the 'CODE' resource with ID=1) must be set

individually to override the default resource attributes (described in

Chapter 7).

Suppress the setting of resource names. (The default is to name each

resource with the name of the segment) Desk accessories must

always be named.

Set the output resource type to type and the ID to JD. This option

indicates the link of a desk accessory of driver—that is, only one

resource is modified. (The default is type 'CODE' and resource IDs

numbered from 0.)

Assembly-language note: When you link a desk accessory or

driver, the Linker uses PC-relative offsets, and attempts to edit JSR,

JMP, LEA, or PEA instructions from A5-relative to PC-relative

addressing mode. Other instructions will generate an error

message.

-sg newSeg=oidSeg Il, oldSeg2 l...

Change segment names. All code in the segments named oldSeg1,

oldSeg2,... is placed in the segment named newSeg.

-sn oldSeg=newsString
Change a segment name. All code in the segment named oldSeg is

placed in the segment named newString.

There are two major differences between -sn and -sg:

a so allows an arbitrary string for the new name, whereas -Sg is

intended only for identifiers separated by commas.

u The order of the oldSeg and newSeg parameters is reversed.

For example,

Link... @

-3g Main«SAConsol, StdIO, tA5Init a

-sn Main="MyDA" ð

The first option combines the three specified segments into one

segment named Main; the second option renames Main to

"MyDA”.

Link 309

Examples

310 Link

SS size Change the maximum segment size to size. The default value is
l 32760 (32K less a few overhead bytes). The value size can be any

value greater than 32760.

64K ROM note: Caution! Applications with segments greater than
32K in size may not load correctly on Macintoshes with 64K ROMs.

-t ype Set the output file type to type. The default type is APPL. `

-uf deleteFile List unreferenced modules in the text file deleteFile, (This option is- .
useful in identifying dead source code.) This file can be used as
input to Lib in building a specialized library that optimizes
subsequent links. See the Lib command’s -df option and “Library
Construction” in Chapter 7 for more details.

-W i Suppress warning messages.

Note: Warnings generally indicate potential errors at run time.

-x crossRefFile Generate a cross-reference listing of active modules and entry
points. The listing is ordered by module within each segment. For
each module, the following information is listed: each active enuy -
point in the module, other modules and entry points that are p
referenced by the module, and other modules that reference this.
module. For each entry point in a module, the modules that
reference the entry point are listed.

Link Sample.p.o ð

"(PLibraries}"PInterface.o d
"{PLibraries}"Paslib.o ð
"(Libraries}"Runtime.o ð
-o Sample ð
-l -la >Sample.map ð

Link the main program file Sample.p.o with the libraries PInterface.o, PasLib.o, and
Runtime.o, placing the output in Sample, and placing the Linker map in the file
Sample.map. Sample will be an application, which can be launched from the Finder
or executed from MPW.

Link -rt MROM=8 -c 'MPS ' -t ZROM -33 140000 ð
-l > ROMLocListing ~o MyROMImage (LinkList}

Link the files defined in the Shell variable {LinkLisņ} into a ROM image file, placing the
output in the file MyYROMImage. The segment size is set to 140,000 bytes, and the ©
ROM is created as a resource 'MROM' with ID=8. The file is typed as being created by .
MPW (creator 'MPS '), with file type ZROM. The Linker location-ordered listing is

placed in the file ROMLocListing.

For additional examples, see “Linking” in Chapter 7 and the makefiles in the

Examples folders for the languages you are using.

See also “Linking” and “More About Linking” in Chapter 7

Lib command, in this chapter

“The Segment Loader,” Inside Macintosh, Volume Il

“The Resource Manager,” Inside Macintosh , Volume I

Inside Macintosh, Volume IV for information on the 128K ROM, System Folder,

and Finder

Appendix H, “Object File Format”

Link 311

Syntax

Description

Input

Output

Diagnostics

Status

Example

Loop...End — repeat command list until Break

Loop

command...

End

Executes the enclosed commands repeatedly. The Break command is used to
terminate the loop. The Continue command can be used to terminate the current
iteration of the loop. Retum characters must appear as shown above, or be replaced
with semicolons (;). i

The pipe specification (|), conditional command terminators (&& and | |), and
input/output specifications (<, >, >>, 2, and 22) may appear following the End
word, and apply to all of the commands in the list. i

None.

None.

None.

Loop returns the status of the last command executed.

The command file below runs a command several times, once for each parameter.

Repeat ~ Repeat a command for several parameters ###

+ Repeat command parameter..
+
Execute command once for each parameter in the parameter
list. Options can be specified by including them with
the command name in quotes.

Set cmd "{1}"

Loop

Shift

Break If "{1}" == "mh
{emd} "{1}”

End

312 Loop...End

Notice that Shift is used to step through the parameters, and that Break ends the loop

when all the parameters have been used.

See also Break, For, and Continue commands

“Structured Commands" in Chapter 3

Loop...End 313

Syntax

Description

Input

Output

Diagnostics

Status

3/7

Make — build up-to-date version of a program

Make. [option...) { targetFile... |

Generates a set of Shell commands that you can execute to build up-to-date versions
of the specified target files. Make allows you to rebuild only those components of a
program that require rebuilding. Make determines this by reading a makefile—this
is a text file that describes dependencies among the components of a program, and
associates sets of Shell commands with those dependency relations. You can specify
makefiles with the -f option. After evaluating the makefile, Make writes the appropriate
set(s) of commands to standard output.

See "Using Make” in Chapter 7 for a description of the format of a makefile.

Make executes in two phases:

1. In the first phase, Make reads the makefiles (the “beachball” cursor spins
backwards during this phase).

2. In the second phase, Make generates the build commands for the target (the cursor
spins forwards)——if a target file doesn’t exist or if it depends on files that are out-of-
date or newer than the target, Make writes out the appropriate command lines for
updating the target file.

You can execute the build commands after Make is done executing.

Standard input.is not read. If you don’t specify a makefile with the -f option, Make tries
to open a file called MakeFile. If no target file is specified, Make uses the first target
encountered in the makefile.

If a file needs to be updated, Make writes a list of Shell commands to standard output.

Errors and warnings are written to diagnostic output. If you specify the -p option,
progress and summary information is also written to diagnostic output.

The following status values are returned:

0 Successful completion
1 Parameter or option error

2 Execution error

C

an

Options -d namd=valuel Define a variable name with the given value. Variables defined

-€

-f makefile

-P

-f

-t

from the command line take precedence over definitions of the

same variable in the makefile. Thus definitions in the makefiles act

as defaults which may be overridden from the command line.

Rebuild everything, regardless of whether targets are out of date.

This option causes Make to unconditionally output all of the

commands to rebuild the specified targets.

Read dependency information from makefile, You can specify

more than one -f option—all dependency information is treated as

if it were in a single file. Qf no -f option is specified, the default file is

a file named MakeFile in the current directory.)

Write progress information to diagnostic output. (Normally, Make

runs silently, unless errors are detected.)

Find roots (that is, the top level) of the dependency graph. (See

the -s option.)

Show structure of target dependencies. This option writes a

dependency graph for the specified targets to standard output,

using indentation to indicate levels in the dependency tree.

Circular dependencies are noted, if present.

"Note: This option overrides the normal Make output. It’s useful in
debugging or verifying complicated makefiles.

“Touch” dates of targets and their prerequisites, that is, bring files

up to date by adjusting their modification dates, without outputting

build commands. This option is used to bring a set of files up to date

when they appear not to be, such as when you've only made

changes to comments. -t does the minimal adjustment needed to

satisfy the dependency relationships—files are touched only if

required, and are given the date of their newest dependency, to

minimize the repercussions of the date adjustments (this feature is

especially useful if the touched file is also a prerequisite for other

programs).

Note: This option overrides normal Make output.

Write a list of unreachable targets to diagnostic output (for

debugging).

Make 315

Example

See also

316 Make

-v Write verbose output to the diagnostic output file. This option is

useful if you want to figure out what Make is doing. The diagnostic
output will indicate if targets do not exist, whether or not they need
to be rebuilt, and why they need to be rebuilt It also indicates

targets in the makefile that were not reached in the build.

-wW Suppress warning messages. Warning messages are issued for things

such as files with dates in the future and circular dependency
relationships.

Make -p -f MakeFile.a Sample

Make the target file Sample, printing progress information. Sample’s dependency
relations are described in the makefile MakeFile.a:

‘Sample f Sample.r
Rez Sample.r ~o Sample

Sample $ff Sample.r Sample.a.o

Link Sample.a.o ~o Sample

Sample.a.o f Sample.a

Asm Sample.a

The f (Option-F) character means ‘is a function of"-that is, the file on the lefthand
side depends on the files on the righthand side. If the files on the righthand side are
newer, the subsequent Shell commands are written to standard output. (See Chapter 7
for details.)

“Using Make” in Chapter 7, for the format of a makefile, examples, and other
information about using Make.

Makefiles for building sample programs are contained in the Examples folders:

m :AExamples:Makefile.a

a :PExamples:Makefile.p

a :CExamples:Makefile.c

Syntax

Description

Input

Output

Diagnostics

Status

Options

ES

MDSCvt — convert MDS Assembler source

MDSCvt { option ...} [file ...]

Converts the specified Macintosh 68000 Development System (MDS) Assembler

source files to the syntax required by the MPW Assembler. The following elements are

converted:

m tokens within statements

a special tokens within macros

w directives

For. a description of these conversions, refer to “MDS Conversion” in Appendix E of

the companion manual MPW Assembler Reference.

Standard input is converted if no filenames are specified. If the -main, -g, or -!

options are used, only one filename should be specified.

‘If input is from the standard input file, the converted output is written to standard

output. If the input file name is Name, the converted output is written to Name.a.

The -n, -prefix, and -suffix options let you modify the naming conventions for the

output file.

Parameter errors and progress information are written to diagnostic output.

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or option error

2 Execution aborted

-d Detab the input. All tabs are removed and replaced with spaces.

The default setting is 8 spaces; this value can be changed with

the -t option.

MDSCvt 317

318

-€

-f directivesFile

-g globals

-i

“p

-pre(fix] string

-sufifix] string

-t tabSetting

MDSCvt

Detab the input (like the -d option), and entab the output as a

function of the tab setting (either 8, or the value specified with the -t

option).

Set the case (upper/lower) of directives according to the entries in

directivesFiie. The file MDSCvt.Directives is supplied for this

purpose; you can edit it to change the capitalization. If you don’t

use this option, then all directives are converted to uppercase.

Convert a main program source and reserve globals space below

AS. Globals may be specified in decimal or hexadecimal (by

preceding the value with a $). The value specified must be negative.

For example,

-g -512

-g $200

Convert include files: No PROC or MAIN or END will be generated

by MDSCvt.

Do not insert MDS-compatible mode-setting directives (BLANKS

ON and STRING ASIS) into the converted source.

Convert a main program source. The conversion is done to make

the file look like the main code and data modules. Only one file

should be converted when using this option.

Do not add the “.a” extension to the input filename to produce the

output filename. If you use this option, you must also specify

either -prefix or -suffix.)

Write MDSCvt's version information and conversion status to

diagnostic output.

If the input filename is “Name”, the output filename is produced by

prefixing the string to Name, that is, “stringName.a”. (You can

suppress the “.a” suffix by using the -n option, or change it by using

the -suffix option.)

If the input filename is “Name”, the output filename is produced by

appending the string to the filename, that is, “Namestring’. The

default suffix is .a.

Set the tab value for input and output files to tabSetting value (2 to

255). The default seting is assumed to be 8.

Example

Limitations

See also

uc When MDSCvt detects a name in the opcode field that is the same as

an MPW directive, it appends the character c to make the name

unique. (The default character is #.)

1 identifier Convert a main program source and define the main program's

entry point by the specified identifier. This option corresponds to

the MDS Linker’s ! command.

MDSCvt -t 8 MDSFilel.Asm MDSFile2.Asm

Convert MDS Assembler source files MDSFile1.Asm and MDSFile2.Asm to MPW

Assembler source files MDSFile1.Asm.a and MDSFile2.Asm.a. The -t option sets the

tab setting for both files to 8, and entabs the output files based on that value. It is

assumed that neither file is a main program because the -main option has not been

specified. If either file is a main program, then the -main option should be specified

and only that file should be specified as input to MDSCvt.

See Appendix E in MPW Assembler Reference for details of conversions that can and

cannot be done with MDSCvt.

Appendix E, “MDS Conversion,” in MPW Assembler Reference

MbDSCvt 319

Syntax

Description

Input

Output

Diagnostics

Status

Example

See also

320 Mount

Mount — mount volumes

Mount drive...

Mounts the disks in the specified drives, making them accessible to the file system.

Drive is the drive number.

Mounting is normally automatic when a disk is inserted. The Mount command is
needed for mounting multiple hard disks, which cannot be “inserted,” or if a volume

has been unmounted via the Unmount command.

None.

None.

Errors are written to diagnostic output.

The following status values are returned:

O The disk was mounted
1 Syntax error

2 An error occurred

Mount 1

Mount the disk in drive 1 (the internal drive).

Unmount and Volumes commands

Syntax

Description

a

Input

Output

Diagnostics

Status

Option

oe
oe

Move — move files and directories

Move [-y ! -ñl [-p] name.. targetName

Moves name to targetName. (Name and targetName are file or directory names.) If

targetName is a directory, then one or more objects (files and/or directories) are

moved into that directory. If targetName is a file or doesn’t exist, then file or

directory name replaces targetName. In either case, the old objects are deleted.

Moved objects retain their current creation and modification dates.

If a directory is moved, then its contents, including all subdirectories, are also

moved. No directory moved can be a parent of targetName.

Name can also be a volume; if targetName is a directory, then name is copied into

targetName.

A dialog box requests a confirmation if the move would overwrite an existing file or

folder. The -y or -n options can be used to avoid this interaction.

None.

None.

Errors and warnings are written to diagnostic output. Progress and summary

information is also written to diagnostic output if the -p option is specified.

The following status values are returned to the Shell:

0 Ali objects were moved

1 Syntax error

2 An error occurred during the move

-Y Answer “yes” to any confirmation dialog that may occur, causing

conflicting files or folders to be overwritten.

-0 Answer “no” to any confirmation dialog that may occur, skipping

the move for files or folders that already exist.

-p List progress information as the move takes place.

Move 321

Examples

See also

322 Move

Move Startup Suspend Resume Quit "{SystemFolder}”

Move the four files from the current directory to the System Folder.

Move File ::

Move File from the current directory to the enclosing (parent) directory.

Move -y Filel File2

Move File] to File2, overwriting File2 if it exists. (This is the same as renaming the

file.)

Duplicate and Rename commands

“File and Window Names’ in Chapter 1

“Filename Generation” in Chapter 3

coe,

fo

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See also

oo

New — open a new window

New [name}

Opens a new window as the active (topmost) window. If name is not specified, the

Shell generates a unique name for the new window, of the form “Untided-n", where 7

is a decimal number. If name already exists, an error results.

Note: New is slightly different from the Open command with the -n option, which

simply brings the specified window to the top if it already exists, without returning an

error.

None.

None.

Errors are written to diagnostic output.

New returns the following status values:

Q No errors
1 Error in parameters

2 Unable to complete operation

3 System error

New Test.a

Open a new window named Testa.

New

Open a new window with a Shell-generated name.

Open command

New 323

NewFoilder — create a directory

Syntax NewFolder name...

Description Creates new directories with the names specified. Any parent directories included in
the mame specification must already exist.

Note: This command can only be used on hierarchical file system CHFS) disks.

input None

Output None

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned to the Shell:

o 0 Folders were created for each name listed
1 Syntax error

2 An error occurred
3 Attempt to use NewFolder on non-HFS volume

Examples Newfolder Memos

Create Memos as a subdirectory of the current directory.

Newfolder Parent :Parent:Kid

Create Parent as a subdirectory of the current directory, and Kid as a subdirectory of
Parent.

324 Newfolder

Syntax

Description

‘a Input

Output

Diagnostics

Status

Options

Examples

a

Open — open a window

Open [-n l-r] l-t] [name }

Opens a file as the active (topmost) window. If neither name nor the -n option is

specified, an error results. If name is already open as a window, that window becomes

the active (topmost) window.

None.

None.

Errors are written to diagnostic output.

Open returns the following status values:

0 No errors

1 Error in parameters

2 Unable to complete operation

3 System error

-n A new window is opened with the tide name. If name is not

specified, a unique name is generated for the new window. If file

name already exists, that file is opened.

-r Opens a read-only window associated with the file name. If file

name doesn’t exist, an error Occurs.

-t Open the window as the target window rather than as the active

window (that is, make it the second window from the top). This

option is identical to the Target command.

Open Test.a

Open the window Test.a.

Open -n

Open a new window with a Shell-generated name, Untiled-n.

Open. "325

See also Target, New, and Close commands

326 Open

Syntax

Description

Input

Output

Diagnostics

Status

Exampies

See also

Parameters — write parameters

Parameters [parameters ...]

The Parameters command writes its parameters, including its name, to standard

output. The parameters are written one per line, and each is preceded by its

mee
E

- parameter number (in braces) and a blank. This command is useful for checking the

results of variable substitution, command substitution, quoting, blank interpretation,

and filename generation. ,

None.

Parameters are written to standard output.

None.

A status value of 0 is always returned.

Parameters One Two "and Three"

Writes the following three lines to standard output:

{0} Parameters

{1} One

{2} Two

{3} and Three

Recall that "..." and '...' quotes are removed before parameters are passed to

commands.

Echo command

“Parameters to Command Files” in Chapter 3

Parameters 327

Syntax

Description

input

Output

Diagnostics

Status

Options

3264

~~ FFH__L____———SSS SS

Pascal — Pascal Compiler

Pascal [option...1 { Alle...]

Compiles the specified Pascal source files (programs or units). You can specify zero
or more filenames. Each file is compiled separately—compiling file Name.p creates
object file Name.p.o. By convention, Pascal source filenames end in a “p” suffix.
See the manual MPW Pascal Reference for details of the language definition.

If no filenames are specified, standard input is compiled, with output directed to the
file p.o. You can terminate input by typing Command-Enter.

Nothing is written to standard output. For each input file name, object code is sent to
the file name.o.

Errors are written to diagnostic output. Progress and summary information is also
written to diagnostic output if the -p option is selected.

The following status values are returned to the Shell:

O0 Successful completion
1 Error in parameters
2 Compilation halted

-b Generate A5-relative references whenever the address of a
procedure or function is taken. (By default, PC-relative references
are generated for routines in the same segment.)

-€ Syntax check only—no object file is generated.

-d name=TRUE | FALSE

Set the compile time variable name to TRUE or FALSE.

-e errLogFile Write all errors to the error log file errLogFile. A copy of the error
report will still be sent to diagnostic output.

C

oy

Go directly to code generation, skipping the compilation pass. For

an input filename Foo.p, an intermediate file Foo.p.o.i is expected

as input to the process. Such a file is created if the Compiler crashes

during code generation (for example, if the disk was full), or was

aborted.

Note: The “beachball" cursor spins clockwise during compilation

and counter-clockwise during code generation.

-i pathnamd,pathnamd...

-k prefixpath

-0 ob/Name

-OV

Search for include or USES files in the specified directories.

Multiple -i options may be specified. At most 15 directories will be

searched. The search order is as follows:

1. Im the case of a USES filename, if no prior $U filename was

specified, the filenam is assumed to be the same as the unit

name (with a *.p” appended).

2. The filename is used as specified. If a full pathname is given,

then no other searching is applied.

If the file wasn't found, and the pathname used to specify the file

was a partial pathname (no colons in the name or a leading

colon), then the following directories are searched.

3. The directory containing the current input file.

4. The directories specified in -i options, in the order listed.

5. The directories specified in the Shell variable {PInterfaces}.

The source filenames specified on the command line must include

any relevant prefixes.

Put the files specified in $LOAD commands in the directory

specified by prefixpath.

Specify the pathname for the generated object file. If objName

ends with a colon (3), it indicates a directory for the output file,

whose name is then formed by the normal rules (that is,

inputFilename.o). If the source file name contains a pathname, it is

stripped off before objName. is used as a prefix. If objName does

not end with a colon, the object file is written to the file objName.

(in this case, only one source file should be specified.)

Suppress register code optimizations.

Turn on overflow checking. (Warning: This may significantly

increase code size.)

Pascal 329

-P

-t

-y pathname

Supply progress and summary information to diagnostic output,
including Compiler header information (copyright notice and
version number), module names and code sizes in bytes, and

number of errors and compilation time.

Suppress range checking.

Enable swapping—the Compiler runs much more slowly, but uses

less memory.

Report compilation time to diagnostic output. The -p option also
reports the compilation time.

Put the Compiler's temporary intermediate (*.0.i") files in the
directory specified by pathname. (See also the -g option.)

Turn off the output of embedded procedure names in the object
code. This option is equivalent to specifying {$D-} in the source
code.

Examples Pascal Sample.p

Compile the Sampie program provided in the PExamples folder.

Pascal Filel.p File2.p -~r

Compile Filel.p and File2.p, producing object files Filel.p.o and File2.p.o, and
performing no range checking.

Note Listing files are not produced directly by the Compiler. Refer to the PasMat and `

PasRef tools.

Availability The Pascal Compiler is available as part of a separate Apple product, MPW Pascal.

See also PasMat and PasRef commands

330 Pascal

Syntax

Description

input

Output

Diagnostics

PasMat — Pascal program formatter (“pretty-printer”)

PasMat [option...] [inputfile | outputfile |)

Reformats Pascal source code into a standard format, suitable for printouts or

compilation. PasMat accepts full programs, external procedures, blocks, and groups

of statements.

Note: A syntactically incorrect program causes PasMat to abort. If this happens, the

generated output will contain the formatted source up to the point of the error.

PasMat options let you do the following:

m Convert a program to uniform case conventions.

æ Indent a program to show its logical structure, and adjust lines to fit into a specified

. line length.

m Change the comment delimiters (* *) to { }.

a Remove the underscore character C _) from identifiers, rename identifiers, or

change their case.

a Format include files named in MPW Pascal include directives.

PasMat specifications can be made through PasMat options or through special

formatter directives, which resemble Pascal Compiler directives, and are inserted

into the source file as Pascal comments. PasMat’s default formatting is

straightforward, and does not necessarily require you to use any options. The best way

to find out how PasMat formats something is to try out-a small example and see.

See Appendix K of the manual MPW Pascal Reference for details of PasMat directives

and their functions.

If no input files are specified, standard input is formatted.

If no output file is specified, the formatted output is written to standard output. Refer

to “Error Handling” below for more information about PasMat's treatment of errors

in the source.

Parameter errors and progress information are written to diagnostic output.

PasMat oe

Status

Options

$3 2

The following status codes are returned to the Shell:

0 Normal termination

1 Parameter or option error

2. Execution terminated

Most of the following options modify the initial default settings of the directives
described in Appendix K of the MPW Pascal Reference manual.

-a Set a- to disable CASE label bunching.

-b Set b+ to enable IF bunching.

-body Set body+ to align procedure bodies with their enclosing
BEGIN/END pair.

-c Set c+ for placement of BEGIN on same line as previous word.

-d Set d+ to enable the replacement of (* *) with { } comment
delimiters.

-e Set e+ to capitalize identifiers.

-entab Replaœ runs of blanks with tabs. The tab value is determined by the
-t option or current t-n directive (not by the file’s tab setting).

-f Set f- to disable formatting.

-g Set g+ to group assignment and call statements.

-h Set h- to disable FOR, WHILE, and WITH bunching.

-i pathnamd, pathname}...
Search for include files in the specified directories. Multiple -i
options may be specified. At most 15 directories will be searched.
The search order for includes is specified under the description of
the -i option for the Pascal command. (Note however that USES are
not processed by PasMat.)

-in Set in+ to process Pascal compiler includes. This option is implied
if the -i option is used.

-k Set k+ to indent statements between BEGIN/END pairs.

-1 Set I+ for literal copy of reserved words and identifiers.

PasMat

-list listingFile Generate a listing of the formatted source. The listing is written to

the specified file. ,

-n Set n+ to group formal parameters.

-o width Set the output line width. The maximum value allowed is 150. The

default is 80.

-P Display version information and progress information to

diagnostic output.

-pattern ~paitern=replacement= l

i Process includes (-in) and-generate a set of output files with exactly

the same include structure as the input, but with new names. The

new output filenames and include directives are generated by

editing the input (or include) filenames according to the pattern

and replacement strings. Pattern is a pathname to be looked for in

the input file and in each include file (the entire pathname is used, -

and case is ignored). If the pattern is found, it is replaced by the

replacement string. The result is a new pathname, which becomes

the name for an output file. For example,

PasMat -pattern =OldFile=NewFile= f .

replaces each name containing the string “OldFile” with the string

“NewFile”.

Note: Any character not contained in the pattern or replacement

strings can be used in place of an equal sign. Special characters

must be quoted. (See “Examples” below.)

-q Set q+ not to treat the ELSE IF sequence specially.

-r Ser r+ to uppercase reserved words.

-rec Indent a RECORD’s field list under the record identifier.

PasMat 333

Ww

-s renameFile

-u

ig

PasMat

Rename identifiers. RenameFile is a file containing a list of
identifiers and their new names. Each line in this file contains two
identifiers of up to 63 characters each: The first name is the
identifier to be renamed; the second name will replace all
occurrences of the first identifier in the output. There must be at
least one space or tab between the two identifiers. Leading and
trailing spaces and tabs are optional. The case of the first identifier
doesn’t matter, but the second identifier must be specified exactly

as it is to appear in the output. The case of all identifiers not
specified in the renameFile is subject to.the other case options:
Ce, -I, -u, and -w) or their corresponding directives. Reserved
words cannot be renamed.

Set the tab amount i each indentation level. If the :-entab option is
also specified, tab characters will actually be Beara’, The default
tab value is 2.

Rename all identifiers based on their first occurrence in the source.
Specifications in the rename (-s) file always have precedence over
this option—that is, the identifier’s translation is’ based on the
rename file rather than on the first occurrence .

Set v+ to put THEN on a separate line.

Set w+ to uppercase identifiers.

Set X+ to suppress space around operators.

Set y+ to suppress space around :=

Set z+ to suppress space after commas.

Set :+ to align colons in VAR declarations (only if a j PasMat
directive in the source specifies a width). |

Set @+ to force multiple CASE tags onto separate lines.

Set #+ for “smart” grouping of assignment and call statements
(grouped assignment and call statements on an input line will
appear grouped on output).

Note: Because # is the Shell's comment character, this option must

be quoted on the command line.

Set _+ for “portability” mode (underscores are deleted from

identifiers).

om

ATN

A

Example

All options except for -list, -pattern, -s, and -entab have directive counterparts. It’s

recommended that you specify the options as directives in the input source so that

you won't have to specify them each time you call PasMat.

{PasMatOpts} variable. You can also specify a set of default options in the exported

Shell variable {PasMatOpts}—PasMat processes these options before it processes the

command-line options. {PasMatOpts} should contain a string (maximum length 255)

specifying the options exactly as you would specify them on the command line

(except for command-line quoting, which should be omitted; also. note that the

options -pattern, -list -s, and -i, which require a string parameter, can only be

specified on. the command line)..For example, you can define {PasMatOpts} to the

Shell (perhaps in the UserStartup file) as follows:

Set PasMatOpts “-n.-u -r -d -entab -# -o 82 -t 2"

Export PasMatOpts

The entire definition string must be quoted to preserve the spaces.

As an alternative to specifying the options directly, you can indicate that the options

are stored in a file, by specifying the file’s full pathname prefixed with the character ^:

Set PasMatOpts "“pathname"

Export PasMatOpts

PasMat will now look for the default options in the specified file. The lines in this file

can contain any sequence of command-line options (except for -pattern, -list, -s,

and -i), grouped together on the same or separate lines. The lines may be

commented by placing the comment in braces (...}). A typical options file might

appear as follows:

-n {group formal params on same line}

-u {auto translation of id's based on ist occurrence}

=f {uppercase reserved words}

-d {leave comment braces alone}

-entab {place real tabs in the output}

-# {smart grouping}

-o 82 {output line width}

-t 2 {indent tab value}

(Except for the tab value, this example shows the recommended set of options.)

If PasMat does find a default set of options, then those options will be echoed as part

of the status information given with the -p option.

Pasmat -n -u -~-r -d -pattern "==formatted/=" Sample.p à

“formatted/Sample.p”

PasMat So

Limitations

Availability

Format the file Sample.p with the -n, -u, -r, and -d options, and write the output to

the file “formatted/Sample.p’. Includes are processed (-pattern) and each Pascal

Compiler $I include file causes additional output files to be generated. Each of these
files is created with the name “formatted/ filename’, where filename is the filename
specified in the corresponding include. (The -pattern parameter contained a null
pattern (==) with “formatted/” as a replacement string—a null pattern always matches
the start of a string.) -

Care must be taken when a command line contains quotes, slashes, or other special
characters that are processed by the Shell itself. In this example, we used the slash
character, so the strings containing it had to be quoted.

PasMat has the following limitations:

E The maximum length of an input line is 255 characters.

m The maximum output line length is 150 characters. .

m The input files and output files must be different.

m Only syntactically correct programs, units, blocks, procedures, and statements are
formatted. This limitation must be taken into consideration when separate include
files and conditional compiler directives are to be formatted.

m The Pascal include directive should be the last thing on the input line if includes are
to be processed. Includes are processed to a maximum nesting depth of five. All
includes not processed are summarized at the end of formatting. (This assumes, of
course, that the in directive/option is in effect.)

w The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by

PasMat. They are treated as two loop control statements by Pascal unless explicitly

declared.

Error handling. The following errors are detected and written to diagnostic output:

z In general, premature end-of-file conditions in the input are not reported as
errors, to accommodate formatting of individual include files, which may be only
program segments. There are cases, however, where the include file is a partial

program, which PasMat interprets and reports as a syntax error.

w There is a limit on the number of indentation levels that PasMat can handle. If this

limit is exceeded, processing will abort. This problem should be exceedingly rare.

m Ifa comment would require more than the maximum output length (150) to meet
the rules given, processing will abort. This problem should be even rarer than
indentation level problems.

If a syntax error in the input code causes formatting to abort, an error message will

give the input line number on which the error was detected. The error checking is not

perfect—successful formatting is no guarantee that the program will compile.

PasMat is available as part of a separate Apple product, MPW Pascal.

436 PasMat

See also Appendix K of the MPW Pascal Reference manual

Pascal and PasRef commands

PasMat 237

Syntax

Description

Input

PasRef — Pascal cross-referencer

PasRef | option ...] { sourceFile ...]

Reads Pascal source files, and writes a listing of the source followed by a cross- (

reference listing of all identifiers. Each identifier is listed in alphabetical order,
followed by the line numbers on which it appears. Line numbers can refer to the
entire source file, or can be relative to individual include files and units. Each
reference indicates whether the identifier is defined, assigned, or simply named (for
example, used in an expression).

See the manual MPW Pascal Reference for details of the Pascal language.

Identifiers may be up to 63 characters long, and are displayed in their entirety unless
overridden with the -x directive. Identifiers may remain as they appear in the input,

or they can be converted to all lowercase (-D or all uppercase (-u).

For inchude files, line numbers are relative to the start of the include file; an
additional key number indicates which include file is referred to. A list of each include

file processed and its associated key number is displayed prior to the cross-reference

listing.

USES declarations can also be processed by PasRef (their associated $U filename

compiler directives are processed as in the Pascal Compiler). These declarations are

treated exactly like inchides, and, as with the Compiler, only the outermost USES

declaration is processed (that is, a used unit’s USES declaration is not processed).

As an alternative to processing USES declarations, PasRef accepts multiple source d

files. Thus you cross-reference 2 set of main programs together with the units they use.

All the sources are treated like include files for display purposes. In addition, PasRef

checks to see whether it has already processed a file (for example, if it appeared twice

on the input list, or if one of the files already used or included it). If it has already

been processed, then the file is skipped.

If no filenames are specified, standard input is processed. Unless the -d option is

specified, multiple source files are cross-referenced as a whole, producing a single

source listing and a single cross-reference listing. Specifying the -d option is the same

as executing PasRef individually for each file.

338

Output

Diagnostics

Status

Options

All listings are written to standard output. Form feed characters are placed in the file

before each new source listing and its associated cross reference. Pascal $P (page

eject) compiler directives are also processed by PasRef, which may generate

additional form feeds in the standard output listing.

Parameter errors and progress information are written to diagnostic output.

The following status codes are returned to the Shell:

O Normal termination

1 Parameter or option error

2 Execution terminated

-a Process all files even if they are duplicates of ones already

processed. The default is to process each (include) file or used unit

only once.

-€ Do not process a unit if the unit’s filename is specified in the list of

files to be processed .on the command line, or if the unit has already

been processed.

-d Treat each file specified on the command line as distinct. The

default is to treat the entire list of files as a whole, producing a single

source listing and a single cross-reference listing. This option is the

same as executing PasRef individually for each specified file.

-i pathname | pathname}...
Search for include or USES files in the specified directories.

Multiple -i options may be specified. At most 15 directories will be

searched. The search order is specified under the description of the

-i option for the Pascal command. f

-1 Display all identifiers in the cross-reference table in lowercase. This

option should not be used if -u is specified, but if it is, the -u is

ignored.

-ni | -noincludes
Do not process include files. The default is to process the include

files.

-nl. | -nolisting
Do not display the input source as it is being processed. (The

default is to list the input.)

PasRef 345

-nolex Do not display the lexical information on the source listing. See the
“Examples” section for further details.

-nt |.-nototal Do not display the total line count in the source listing. This option
is ignored if no listing is being generated (-nd).

-nfu] | -nouses
Do not process USES declarations. (The default is to process USES
declarations.) If -nu is specified, then the -c option is ignored.

-0 The source file is an Object Pascal program. The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
may be. processed. The default is to assume the source is not an
Object Pascal program.

-p Write version and progress information to diagnostic output

-S Do not display include and USES information in the listing or cross
reference, and cross-reference by total source line number count

rather than by include-file line number.

-t l Cross-reference by total source line-number count rather than by
include-file line number. This option can be used if you are not
interested in knowing the positions in included files. However, the
include information is still displayed (unless -s, -ni, or -nu is
specified). This option is implied by the -s option.

-u Display all identifiers in the cross-reference table in uppercase.
This option should not be used if -1 is specified.

-w width Set the maximum output width of the cross-reference listing. This
setting determines how many line numbers are displayed on one
line of the cross-reference listing. It does not affect the source
listing. Width can be a value from 40 to 255; the default is 110.

-x width Set the maximum display width for identifiers in the cross-reference
listing. (The default is to set the width to the size of the largest

identifier cross-referenced.) If an identifier is too long to fit in the
specified width, itis indicated by preceding the last four characters
with an ellipsis (...). Width can be a value from 8 to 63.

Normally both include files and USES declarations are processed. The -noincludes
option suppresses processing of includes. The -nouses option suppresses processing

of USES.

346 PasRef

ZN

E

Example

1 1
2. 1
301
4 1
5 1

6 1
a. T

8 1

Ot oh

19 i

iz 1

3 T

4 E

29 t

36 H

at i

wow ows nu & Ww NY

be pa pa N O

i eE A S Nn oe w

ti pa J A

Omitting the -nouses option causes PasRef to process a USES declaration exactly as

does the Pascal Compiler. However, you may want to cross-reference an entire

system, including ali of the units of that system. Processing the units through the USES

declaration would cause only the INTERFACE section of each unit to be processed. If

you use the -nouses option, then USES will not be processed and each unit from the

list can be cross-referenced, treating the entire list as a single source.

PasRef can also cross-reference all the units of a program while still expanding other

units not directly part of that program, such as the Toolbox units. In that case

the -c option should. be used. With the -c option, if the ($U interface) filename is the

same as one of the filenames specified on the list, then the unit will not be processed

from the USES declaration, because its full source will be (or has been) processed.

To summarize, you have the following choices:

m Don't process the USES, and specify a list of all files you want to process, by using

the -nouses option.

a Process only the INTERFACEs through the USES declarations (like the Compiler),

by omitting the -nouses option.

a Process some of the units through the USES and others as full sources, by specifying

the -c option.

In all cases where a list of files is specified, no unit will ever be processed more than

once (unless the -a option is given).

PasRef -nu -w 80 Memory.p > Memory.p.Xref

Cross-reference the sample desk accessory Memory.p and write the output to the file

Memory.p.Xref. No USES are processed (-nu). The following source and

cross-reference listings are generated:

wwe as ae eee ee we ee wee oe et Oe ee 8 TR SR

== Memory.p -~ reports the amount of free space in the application

== and system heap

ee we i re ew nw aaraa a

caas UNIT Memory;

-- INTERFACE

-- USES

-- MemTypes,

-- QuickDraw,

>= osintf,

s Toolintf,

== PackIntf;

-~ {SD+} { procedure names in the code, please }

PasRef 347

18 1 18

39 1 19

20 g 20

an 1 21

22; tel, 22

2a -L 23

24 1 24

et celera

222 1 222

223 1 223

`

i. memory. p

~-A-

accEvent

accRun

App.iczZone

Away

-3-

BegiaUpdate

acla

Boolean

csCode

CSParam

Cos

-- {$R-} { If we make a mistake, make it big }

“- { These 5 routines must be declared as below. Calls to your DA

-- are dispatched to the appropriate routine by DRVRRuntime }

== FUNCTION DRVROpen (ctlPB: ParmBlkPtr;

-- dctl: DCtlPtr): OSErr;

== END. {of memory UNIT}

Each line of the source listing is preceded by five columns of information:

1: The total line count.

2: The include key assigned by PasRef for an include or USES file. Gee below.)

3: The line number within the include or main file.

4 : Two indicators (left and right) that reflect the static block nesting level. The left

indicator is incremented (mod 10) and displayed whenever a BEGIN, REPEAT, or

CASE is encountered. On termination of these structures with an END or UNTIL,

the right indicator is displayed, then decremented. It is thus easy to match BEGIN,

REPEAT, and CASE statements with their matching terminations.

5; A letter that reflects the static level of procedures. The character is updated for

each procedure nest level ČA" for level 1, "B” for level 2, and so on), and

displayed on the line containing the heading, and on the BEGIN and END

associated with the procedure body. Using this column you can easily find the

procedure body for a procedure heading when there are nested procedures

declared between the heading and its body.

The cross-reference listing follows:

146*¢ 1) 167 (1)

147*(i} 182 (1)

125 (1)

153*(1) 168 (1)

175 (1}

93 ¢ 1} 121 { 1)

151*{ 1}

165 { 1)

168 { 1)

47*{ 1) 50*(1) 53*(1) 56*{ 1) 59*{ 1} 143*(1)

165 ¢ 1) 168 { 1) 193*{ 1) 219*¢ 1) 231*{ 1} 238*(1)

348 PasRef

DJCtiPtr

dct lRefNum

dcr lWindow

dct lwindow

DisposeWindow

DrawString

ef cetera

«xx End PasRef:
ATN

Limitations

Availability

See also

48*{ 1) Si*¢ 1) 54*(1} 57*(1) 6o*(1) 144*¢ 1)

194*(1) 202 { 1) 209 { 1) 211 { 1) 220*(1) 223 (1)

225 (1) 226 (1) 232*¢ 1) 239*¢ 1) :

48 (1) 51 t 1) 54 (1) 57 (1) 60 (1) 144 ¢ 1)

194 1) 220 (1} 232 (1} 239 [1)

209 (1)

202 { 1) 21łl={ 1) 225 (1) 226={ 1)

223 (1)

225 (1)

92 ¢ 1) 123 { 1) 128 (1) (134 (1) 137 (1) 139 í 1)

100 id's 230 references

The numbers in parentheses following the line numbers are the include keys of the

associated include files (shown in column 2 of the source listing). The include file

names are shown following the source listing. Thus you can see what line number was

in which include file. An asterisk (*) following a line number indicates a definition of

the variable. An equal sign (=) indicates.an assignment A line number with nothing

following it means a reference to the identifier.

PasRef does not process conditional compilation directives! Thus, given the “right”

combination of $IFC's. and $ELSEC’s, PasRefs lexical (nesting) information can be

thrown off. If this happens, or if you just don’t want the lexical information, you may

specify the -nolex option.

PasRef stores all its information on the Pascal heap. Up to 5000 identifiers can be

handled, but more identifiers will mean less cross-reference space..A message is

given if PasRef runs out of heap space.

Note: Although PasRef never misses a reference, it can infrequently be fooled into

thinking that a variable is defined when it actually isn’t. One case where this happens

is in record structure variants. The record variant’s case tag is always flagged as a `

definition (even when there is no tag type) and the variant’s case label constants (if

they are identifiers) are also sometimes incorrectly flagged’ depending on the

context. (This occurs only in the declaration parts of the program.)

The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by PasRef.

These are treated as two loop control statements by Pascal unless explicitly declared.

PasRef is available as part of a separate Apple product, MPW Pascal.

MPW Pascal Reference

Pascal command

PasRef 349

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

Paste — replace selection with Clipboard contents

Paste [-c count] selection {| window]

Finds selection in the specified window and replaces its contents with the contents of
the Clipboard. If no window is specified, the command operates on the target window
(the second window from the top). It’s an error to specify a window that doesn’t exist

For a definition of selection, see “Selections* in Chapter 4; 2 summary of the
selection syntax is contained in Appendix B.

Errors are written to diagnostic output.

The following status values are returned:

0 At least one instance of the selection was found
1 . System error

2 Any other error

-c count For a count of n, replace the next n instances of the selection with
the contents of the Clipboard.

Paste §

Replace the current selection with the contents of the Clipboard. This command is
like the Paste item in the Edit menu, except that the action occurs in the target
window.

Paste /BEGIN/:/END/

Select everything from the next BEGIN to the following END, and replace the

selection with the contents of the Clipboard.

S

See also Copy, Cut, and Replace commands

“Selections” in Chapter 4

Paste 351

Syntax

Description

Input

Output

Diagnostics

Status

Options

352 Print

- Print — print text files

Print [option... [fle...]

Prints text files on the currently selected printer. (Printers are selected. with the
Chooser desk accessory.) One or more files may be printed.

Note: Print does not support font substitution. To print in a font other than that
indicated in the resource fork of the file, use the -font option.

Important: Print requires the printer drivers available on version 1.0 (or later) of the

Printer Installation disk.

If no files are specified, Print reads from standard input. You can terminate input by
typing Command-Enter.

All output goes to the currently selected printer. Print sends no output to standard

output.

Errors and warnings are written to diagnostic output. If the -p option is specified,
progress and summary information is also written to diagnostic output.

The following status values are returned:

0 Successful completion
1. Parameter or option error
2. Execution error

Note: The Print options can also be applied to the Print Window/ Print Selection
menu item, by including them in the exported Shell variable {PrintOptions}.
{PrintOptions} is originally set to '-hħ' in the Startup file.

-b Print a round-rect border around the printable area of the page.
Headers, if specified with the -h option, are separated from the

body text-by an extra line.

-cdopies] n Print copies of the file or selection.

fo

-flont] name

-from n

-h.

-hffont] name

-hslize] n

-llines)} 7

-q quality

Print using the font identified by name (for example, Courier). The

default is the font indicated in information in the resource fork of _

the file, if present, and otherwise Monaco 9. Gee also the -size

option.)

Note; Printing with a font that is not directly supported by the

printer is significantly slower than printing with a built-in font

Print pages starting from page number n. The default is to start with

thefirst page of the file.

Print page headers at the top of each page. The header indicates the

time of printing, the name of the file, and the page number.

Specify the font to be used in headers (-h option). The default is the

font used in the file.

Specify the font size to be used in headers. The default is 10.

Print (at most) n lines per page. Line spacing is adjusted so that the

full page is used. If both -I and -is are specified, the -1 option takes

precedence.

Set line spacing. A value of 1 indicates normal (single) spacing (the

default), 2 indicates double-spacing, and so on.

Tum on line numbering; numbers appear to the left of the printed

text.

Specify the width of the line number (-n) field in characters.. (The

default is value is 5.) Negative values for n cause the field to be zero-

padded.

Write progress information to diagnostic output, indicating which

files are printing and the number of lines and pages printed.

Number the pages of the file beginning with 7. By default, pages

are numbered starting with 1.)

Set print quality on the Image Writer. quality is one of the following

strings:

high standard draft

Note: This option is ignored when printing on the LaserWriter.

Print 353

Examples

See also

354 Print

-r

-slize] n

-tlabs] n

Output pages to the printer in reverse order. This option eliminates
the need to reorder pages on the LaserWriter.

Print using the font size identified by n The default is to use the font
size indicated in the resource fork of the file, if present; otherwise,

the default size is 9.

Expand tabs, using the indicated tab setting. If this option isn’t

specified, the tab setting is taken from the resource fork of the file, if

present; otherwise, the tab setting is taken from the {Tab} variable.

If printing page headers (with -h), use name as the title. (The default
is to use the filename.)

Print pages up to page n. (The default is to print to the last page of
the file.)

The following options control the page margins. n is the margin width in inches.

-tm 7

bmn

-m 7

rm n

Top margin. (Default = 0 inches)

Bottom margin. (Default = 0 inches)

Left margin. Default = 0.2778 inches, for 3-hole punched pages)

Right margin. (Default = 0 inches)

Print -h -size 8 -ls 0.85 Startup UserStartup

Print the files Startup and UserStartup with page headers, using Monaco 8 and
compressing the line spacing.

Print

Print all text subsequently entered (that is, until you indicate end-of-file by typing
Command-Enter).

“Print...” menu item in Chapter 2

syntax

Description

ZN

input

Output

Diagnostics

Status

Options

———
ee

Rename — rename files and directories

Rename {.-y | -n}] name newName

The file, folder, or disk specified by name is renamed newName. A dialog box

requests a confirmation if the rename would overwrite an existing file or folder. The -y

or -n options can be used in command files to avoid this interaction.

Note: You can’t use the Rename command to change the directory a file is in. To do

this, use the Move command.

Note also: Wildcard renames in the following form will not work:

Rename *.text =.p

This is because the Shell expands the filename patterns “=.text” and “=.p” before

invoking the Rename command. In order to gain the desired effect, you would need

to execute a command such as the one shown in the fourth example below.

None.

None.

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 Successful rename

1 Syntax error

2 Name does not exist

3 An error occurred

-y Answer “yes” to any confirmation dialog that may occur, causing

conflicting files or folders to be deleted.

-0 Answer “no” to any confirmation dialog that may occur, skipping

the rename for files or folders that already exist.

Rename 355

Exampies

See also

Rename Filei File2

Change the name of Filetto File2.

Rename HD:Programs:Prog.c Prog.Backup.c

Change the name of Prog.c in the directory HD:Programs to Prog.Backup.c in the

same directory. no

Rename Untitled: Backup:

Change the name of the disk Untitled to Backup.

To perform a wildcard rename, you could execute the following set of commands:

For Name In =.text

(Evaluate "{Name}" =~ /(=)@l.text/) > Dev:Null
Rename "{@1}.text™ "{@1}.p"

End

The Evaluate command is executed only for its side effect of permitting regular
expression processing. (The expression operator =~ indicates that the right-hand
side of the expression is a regular expression.). Thus, you can use the regular
expression capture mechanism, (regularExph®n. Evaluate’s output is tossed in the

bit bucket (Dev:Null).

Move command

Alias command (for giving alternate names to a command)

356 Rename

Syntax

Description

~

Input

Output

Diagnostics

Status

Options

Examples

ee
e

Replace — replace the selection

Replace [-c count] selection replacement | window }

Finds selection in the specified window and replaces it with replacement. If no window

is specified, the command operates on the target window (the second window from

the top). It’s an error to specify a window that doesn't exist If a count is specified, the

Replace command will be repeated count times.

For a definition of selection, see “Selections” in Chapter 4. A summary of the

selection syntax is contained in Appendix B.

The replacement may contain references to parts of the selection by using the ®

operator. The expression ®n, where nis a digit, is replaced with the string of

characters that matches the regular expression tagged by ®z in the selection. (See

“Tagging Regular Expressions With the ® Operator” in Chapter 4.)

All searches are by default case insensitive. To specify case-sensitive matching, set

the {CaseSensitive} variable before executing the command. CYou can do this by

selecting the Case Sensitive item from the Find menu.)

None.

None.

Errors are written to diagnostic output.

The following status values are returned:

© At least one instance of the selection was found

1 Syntax error

2 Any other error

-C count Repeat the command count times. As a convenience, œ (Option-5)

can be specified in place of a number. -c °° replaces all instances

of the selection from the current selection to the end of the

document Cor to the start of the document, for a backward search).

Replace -c œ /myVar/ ‘'myVariable' Prog.p

Replace every subsequent instance of the selection with the string in single quotes.

Replace 357

See also

358

Replace -c 5 /*[{ ðt]+/ '"

Strip off all the spaces and tabs at the front of the next five lines in the file (replace with
the null string). This action takes place. in the target window.

Set HexNum [0-9A-F]+
Set Spaces [dt]+
Replace -c œ /({HexNum})@1{Spaces} ({HexNum})®2/ ®1dn®2

Define two variables for use in the subsequent Replace command, and convert a file.
that contains two columns of hex digits (such as the icon list from ResEdit) into a
single column of hex digits. :

Find and Clear commands

Chapter 4, “Advanced Editing”

Appendix B, “Selections and Regular Expressions”

Replace

Syntax

Description

input

Output

Diagnostics

Status

Options

Examples

Request — request text from a dialog

Request [-d default] message

Displays an editable text dialog with OK and Cancel buttons and the prompt message.
If the OK button is selected, then all text that the user typed into the dialog box is
written to standard output. The -d option lets you. set a default response to the request.

None.

Text from the dialog is written to standard output.

None.

The Request command returns the following status values

0 The OK button was selected

1. Syntax errors

2 The Cancel button was selected

-d default The editable text field of the dialog is initialized to default. The
default text appears in the dialog box-—if the OK button is selected
without changing the response, the default is written to standard

output.

Set Exit 0 : ‘

Set FileName "`Request 'File to compile' -d “{Active}"""

If {FileName} # ""

Pascal "{FileName}" 2> "{WorkSheet}"™

End

Set Exit 1

Displays a dialog box that lets the user enter the name of a file to be compiled. Sets
the default to be the name of the active window, as follows:

Request 359

file to compile

HD:MPLU-Liorksheet

See also Alert and Confirm commands

360 Request

a

Syntax

Description

Input

Output

Diagnostics

Status

Rez — Resource Compiler

Rez: [option... } [resourceDescriptionFile... |

Creates the resource fork of a file according to a textual description. The resource

description file is a text file that has the same format as the output produced by the

. Resource Decompiler, DeRez. The data used to build the resource file can come

directly from the resource description file(s) as well as from other text files (via

#include and read directives in the resource description file), and other resource

files (via the include directive).

Rez includes macro processing, full expression evaluation, and built-in functions and

system variables. For details of Rez, and the format of a resource description file, see

Chapter 6. For a summary of the format of a resource description file, see

Appendix D.

Standard input is processed if no filenames are specified.

For all input files on the command line, the following search rules are applied:

1. Try to open the file with the name specified “as is.”

2. If the preceding rule fails, and the filename contains no colons or begins with a

colon, append the filename to each of the pathnames specified by the {RIncludes}

variable and try to open the file.

No output is sent to the standard output file. By default, the resource fork is written to

the file RezOut. You can specify an output file with the -0 option.

If no. errors or warnings are detected, Rez runs silently. Errors and warnings are

written to diagnostic output

The following status codes are returned:

0 No errors
1 Error in parameters

2 Syntax error in file

3 VO or program error

Rez 36)

Options -dreator! creatorExpr

Set the output file creator. (The default value is '??2?'.)

-dlefine] macrd=data }
Define the macro variable macro to have the value data. If data is

omitted, then macro is set to the null string—note that this still

means that macro is defined. The -d option is the same as writing

#define macro | data]

at the beginning of the input.

-0 outpuiFile Place the output in ouiputFile. The default output file is Rez.Out.

-plrogress] Write version and progress information to diagnostic output

-rd Suppress warming messages if a resource type is redeclared.

-rO Set the mapReadOniy flag in the resource map.

-tlype] typeExpr Set the type of the output file. The default value is ‘APPL’.

-ulndef] macro Undefine the macro variable macro. This is the same as writing

#undef macro

at the beginning of the input. It is only meaningful to undefine the

preset macro variables.

Example Rez Types.r Sample.r -o Sample

Generate a resource fork for the file Sample, based on the descriptions in Types.r and

Sample.r. i

See also DeRez and RezDet commands

Chapter 6, “Using the Resource Compiler and Decompiler”

Standard resource type declarations in the {RIncludes} directory:

m Types.r

a SysTypes.r

s MPWTypes.r

Chapter 5, “Editing Resources With ResEdit”

362 Rez

[>

Syntax

Description

ee
ġģġűűmaÜmġđūQ mm

2
IAA IIIT TT

RezDet — the resource detective

RezDet [-b] [-q | -s | -d | -+ | -1] resourceFile...

If no options are specified, RezDet investigates the resource fork of each file for

damage or inconsistencies. The specified files are read and checked one by one.

Output is generated according to the options specified.

RezDet checks for the following conditions:

u The resource fork is at least the minimum size. (There must be enough bytes to read

a resource header.)

a There is no overlap or space between the header, the resource data list, and the

resource map. There should be no bytes between the EOF and the end of the

resource map.

= Fach record in the resource data list is used once and only once. The last data item

ends exactly where the data list ends.

e Each item in the resource type list contains at least one reference; each sequence of

referenced items starts where the previous resource type item’s reference list

ended; and each item in the reference list is pointed to by one and only one

resource type list item.

a There are no duplicates in the resource type list

a Each name in the name list has one and only one reference, and the last name

doesn’t point outside the name list.

a There are no duplicate names in the name list. Duplicate names cause an advisory

warning rather than a true error. This warning is given only if the -s, -d, or -r option

_is selected.

= Each reference list item points to a valid data item and either has a name list offset

of -1 or points to a valid name list offset.

a Bits 7 (Unused), 1 (Changed), or 0 (Unused) should not be set in the resource

attributes.

a All names have a nonzero length.

Fields are displayed as hex or decimal for numeric values, or as a hex dump with

associated printable Macintosh characters. The characters return ($0D), tab ($09),

and null ($00) are displayed as "=", “A”, and *.” respectively. The same is true for a

resource name shown as text strings.

Note: RezDet does not use the Resource Manager and should not crash, no matter

how corrupt the resource fork of the file.

RezDet 363

input

Output

Diagnostics

Status

Options

Examples

RezDet does not read from standard input.

Information describing the resource fork is written to standard output (together with
any other information generated by the -s, -d, -l, or -r options).

Error messages go to diagnostic output.

The following status values are possible:

0 No errors detected

1 Invalid options or no files specified
2 Resource format error detected

3 Fatal error—an I/O or program error was detected

Only one of the following options can be used at one time:

-qluiet] Don’t write any information to standard output This option
suppresses all resource file format errors normally generated.

-s[how] Write information about each resource to standard output.

-diump] Same as -show but also generates detailed information about
headers, name lists, data lists, and so on.

-tlawdump! Same as -dump but also dumps contents of data blocks, and so on.

Note: This option can generate huge amounts of output.

-list] List resource types, IDs, names, attributes, and resource sizes to
standard output in the following format:

'type' (D,name,attributes) {stzel

The following option can be used by itself or with other options:

-blig} Read the data for each resource into memory one resource at a
time, instead of all at once (used for huge resource files). If RezDet
tells you that it ran out of memory, try using this option.

RezDet "{SystemFolder}System”

Check the System file for damage.

364 RezDet

Limitations

RezDet -q Foo || Delete Foo

Remove the file Foo if the resource fork is damaged.

Duplicate resource name warnings are generated even if the names belong to

resources of different types.

The file attributes field in the resource map header is not validated.

The Finder-specific fields in the header and resource map header are ignored.

RezDet 365

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

366 Save

NN A A

Save — save windows

Save [-a ! window]

Saves the contents of window to disk, without closing window. The -a option saves all
windows. Save with no parameters saves the target window (the second window from
the top).

None.

None.

Errors are written to diagnostic output.

Save returns the following status values:

0 No errors

I Syntax error

2 = Any other error

-a Save all open windows.

Save Test.c

Save the contents of the window titled Testc.

Save "{Active]”

Save the contents of the active window.

Save "{Worksheet}”

Save the Worksheet window. This command is included in the Suspend and Quit

files—it saves the Worksheet whenever you run an application or quit from the Shell.

ON

Syntax

Description

Input .

Output

Diagnostics

Status

Options

Examples

=e ee See

Search — search files for a pattern

Search {-1] pattern | file...)

Searches the input files for lines that contain a pattern, and echoes them to standard

output If no input file is given, standard input is searched.

Pattern is 2 regular expression, optionally enclosed in forward slashes (/). Pattern is

defined in "Pattern Matching” in Chapter 4 and in Appendix B.

Note: Pattern matching is by default case insensitive. To specify case-sensitive

matching, set the {(CaseSensitive} variable to a nonzero value and export it before

executing the command. (You can do this by selecting the Case Sensitive item from

the Find menu.)

Standard input is read if no files are specified.

Fach line that contains the pattern is written to standard output. If more than one

input file is given, Search prepends the filename to each output line.

Error messages are written to diagnostic output.

Search returns the following status values:

0 No error

1 Parameter error

2 Pattern not found

-1 Display line numbers with the matched line(s).

Search /procedure/ Sample.p

Search the file Sample.p for the pattem “procedure”. All lines containing this pattern

are written to standard output

Search /Export / "“{MPW}"Startup " {MPW}"UserStartup

List the Export commands in the Startup and UserStartup files.

Search 367

See also

368

Search /PROCEDURE [a-zA-z0-9_]*;/ "{PInterfaces}"~

Search for the procedures with no parameters in the Pascal interface files supplied
with MPW Pascal. Because more than one input file is specified, a filename will
precede each line in the output.

Search -l /typedef[{ dt}+struct/ "{CIncludes}"=

List all lines containing stucture typedefs in the include files supplied with MPW C.
Both the filename and the line number will be listed with each line that matches the

pattern.

Find command

“Pattern Matching (Using Regular Expressions)” in Chapter 4

Search

a

Syntax

Description

Input

Output

Diagnostics

Status

Examples

e
e

Set — define or write Shell variable

Set [name | value }}

Assigns the string value to the variable name. If value is omitted, Set writes the name

and its current value to standard output. If both name and value are omitted, Set

writes a list of all variables and their values to standard output (This output is in the

form of Set commands.)

Note: To make variable definitions available. to enclosed command files and

programs, you must use the Export command.

None.

If value or both name and value are omitted, variable names and their values are

written to standard output.

Error messages are written to diagnostic output.

The following status values are returned:

Q No error

1 Parameter error

Set CIncludes "{MPW}CFiles:CIncludes:"

Redefine the variable CInciudes.

Set CIncludes

Display the new definition of Cincludes.

Set Commands ð
":, (MPW}Tools:, (MPWlApplications:, {MPW} ShellScripts:"

Redefine the variable {Commands} to include the directory "(MPW}ShellScripts:”.

(See Chapter 3 for a complete list of predefined variables.) ,

Set > SavedVariables

... other commands

Execute SavedVariables

Set 369

See also

370 Set

Write the values of all variables to file SavedVariables. Because the output of Set is
actually Set commands, the file can be executed later to restore the saved variable
definitions. This technique is used in the Suspend and Resume scripts to save and
restore variable definitions, as well as exports, aliases, and menus.

Export and Unset commands

“Defining and Redefining Variables” in Chapter 3

“The Startup and UsesStartup File” in Chapter 3

Syntax

Description

input

Output

Diagnostics

Status

Options

eee eee eee SS eeeeeeeeeEeEaEaEaEoEoEouyr———
———EEEEE

p n O

Setfile — set file attributes

Setfile {option...] fle...

Sets attributes for one or more files. The options apply to all files listed.

None.

None.

Error messages are written to diagnostic output

The following status values are returned:

O The attributes for all files were set
1 Syntax error

2 An error occurred

-C creator Set the file creator. Creator must be 4 characters; for example,

-c 'MPS '

-t type - Set the file type. Type must be 4 characters; for example,

-t ‘TEXT! l

-d date Set the creation date. Date is a string in the form

"mm/dd/yy | hh:mm:ss] [AM | PM]]"

representing month, day, year (0-99), hour (0-23), minute, and’

second. The string must be quoted if it contains a space. A period

(.) indicates the current date and time.

-m date Set the modification date: same format as above. A period (.)

indicates the current date and time.

-L hv Set the icon location. k and v are positive integer values and

represent the horizontal and vertical pixel offsets from the upper-

left corner of the enclosing window.

Settile 371 |

Examples

See also

372 Seffile

-a attributes Set the file attributes. Attributes is a string composed of the
characters listed below. Attributes that aren’t listed remain
unchanged.

L Locked
V Invisible

B Bundle

S System

I Inited

D on Desktop

Uppercase letters set the attribute to 1, lowercase to 0: For example,

Setfile -a vB

clears the invisible bit and sets the bundle bit.

Note: These attributes are described in the "File Manager” chapter
of Inside Macintosh. Note that setting the locked bit doesn’t
prevent the file from being changed.

Setfile -c "MPS " -t MPST ResEqual

Set the creator and type for the MPW Pascal tool ResEqual.

Setfile Foo -m "2/15/86 2:25"

Set file Foo’s modification date.

Setfile Foo Bar -m .

Set the modification date to the current date and time (.). This is useful, for instance,

before running Make.

Files command (The -l option displays file information.)

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See also

vr
 e e e ee

naaa
arr

Shift — renumber command-file parameters

Shift { number |

Renames the command-file positional parameters {number+1}, {number+2}... to

(1}, {2}, and so on. If number is not specified, the default value is 1. Parameter 0 (the

command name) is not affected. The variables {Parameters}, ("Parameters"}, and

{+} variables are also modified to reflect the new parameters.

None.

None.

` Errors are written to diagnostic output.

The following status values are returned:

O Success
1 Error in the parameter

The following command file, “FontMany,” sets the font information for a list of

windows. .

FontMany fontName fontSize [window..]

Set Exit 0

Set fontName "{1}"

Set fontSize "{2}"

Shift 2 :

For window in {"Parameters"}

Font "{fontName}" "{fontSize}" "{window}"

End ;

The Shift command removes FontMany’s fontName and fontSize parameters from

("Parameters"}, so that {"Parameters"} can be used in the For command. The new

command file could be called as follows: 3

FontMany Monaco 9 `windows`

That is, use Monaco 9 to display all the open windows.

“Parameters to Command Files” in Chapter 3

Shift 373

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See also

374 Tab

Tab — set a window's tab setting

Tab number | window |

Sets the tab setting of the file in window to number spaces. If no window is specified, (
the command operates on the target window (the second window from the top). It's š

an error to specify a window that doesn’t exist.

Note: The Tab command (and the Tabs... menu item) modify the tab setting of an

existing window. The {Tab} variable is used to initialize the tab setting of a new

window, or as the default for files with no tab setting.

None.

None.

Errors are written to diagnostic output.

Tab. retums the following status values:

0 No errors

1 Syntax error

2. An illegal tab count was specified

. Tab 4

Set the tab value of the target window to represent 4 spaces:

Entab command

f

Syntax

Description

Input

Output

Diagnostics

Status

Examples

See also

Target — make a window the target window

Target name

Makes window name the target window for editing commands (that is, the second
window from the top). If window name isn’t already open, then file name is opened
as the target window. If name doesn’t exist, an error is returned.

None.

None.

Error messages are written to diagnostic output

Target returns the following status values:

Q No errors
1 Error in parameters

2 Unable to complete operation
3 System error

Target Sample.a

Make the window Sample.a the target window.

“Editing With the Command Language” in Chapter 2

Target 375

Syntax

Description

Input

Output

Diagnostics

Status

Options

ee

EE
A eee _ eee

TLACvt — convert Lisa TLA Assembler source

TLACvt [option...] [sourceFile...}

Converts the specified Lisa Workshop TLA Assembler source files to the syntax

required by the MPW Assembler. If the input file name is name, the converted output

is written to name.a. The following elements are converted:

a tokens within statements

w special tokens within macros

w directives

For the details of these conversions, see “TLA Conversion” in Appendix E of the

companion volume MPW Assembler Reference.

The case (upper/lower) of directive names in the output may be controlled by editing

the file TLACvt.Directives. This file contains a list of all the MPW Assembler

directives needed for conversion. The pathname to this file must be specified with

the -f option.

If no filenames are specified, standard input is converted.

If input is from the standard input file, the converted output is written to standard

output. If the input file name is name, the converted output is written to mame.a. You

can use the -n, -prefix, and -suffix options to modify the output file naming

conventions.

Parameter errors and progress information are written to diagnostic output.

The following status codes are returned to the Shell:

0 Normal termination

1 Parameter or option error

2 Execution terminated

-d Detab the input. All tabs are removed and replaced with spaces.

The number of spaces is determined by the tab setting. (See the -t

option below.)

-€ Detab the input (as done by the -d option) and entab the output as a

function of the tab setting. (See the -t option below.)

376 TLACvt

Exampie

Limitations

-f directivesFile

-n

-preifix] sring

-suflfix] siring

-t tabSetting

TLACvt -t 8

The casing of directives is controlled by the file of directives

specified by directivesFile. The file TLACvt.Directives is supplied

for this purpose; you can edit it to change the capitalization. By

default, all directives are converted to uppercase.

Do not insert TLA-compatible mode-setting directives (BLANKS

ON and STRING ASIS) into converted source.

Do not add the “.a” extension to the input filename to produce the

output filename. If you specify this option, you must also specify

-prefix or -suffix.

Writes TLACvt’s version information and conversion status to

diagnostic output.

If the input file name is Name, the output filename is produced by

prefixing string to the name, that is, “stringName.a". (The “.a”

suffix may be suppressed by using the -n option or changed by using

the -suffix option.)

If the input file name is Name, the output filename is produced by

appending string to the file name, that is, “Namesiring”. The

default suffix is *.a”.

Set the output file’s tab value to tabSetting (2 to 255). The default is

to use the input file’s tab setting (if there is one); otherwise a value

of 8 is assumed. (8 is the default used by the Lisa Workshop’s

MacCom utility when transferring text files—it’s assumed that

MacCom was used to transfer the TLA files from the Lisa to the

Macintosh.)

When TLACv detects a name in the opcode field that is the same as

an MPW directive, it appends the character c to make the name

unique. (The default character is #.)

TLAFilel.Text TLAFile2.Text

Convert the Lisa TLA Assembler source files TLAFile1.Text and TLAFile2.Text to the

MPW Assembler source files TLAFile1.Text.a and TLAFile2.Texta. The -t option sets

the tab setting for both input files to 8, and entabs the output files based on a tab

setting of 8.

Limitations are noted in the detailed description of TLA conversions in MPW

Assembler Reference.

TLACvt 377

See also

378

Appendix E, “TLA Conversion,” in Macintosh Workshop Assembler Reference

CvtObj command

TLACvt

Syntax

Description

input

Output

Diagnostics

Status

Example

See also

Unalias — remove aliases

Unalias [name... }

Removes any alias definition associated with the alias name. (It is not an error if no

definition: exists for name.)

Caution: If no names are specified, all aliases are removed.

The scope of the Unalias command is limited to the current command file; that is,

aliases in enclosing command files are not affected. If you are writing a command file

that is to be completely portable across various users’ configurations of MPW, you

should place the command

Unalias

at the beginning of your file to make sure no unwanted substitutions occur.

None.

None.

None.

A status value of 0 is always retumed.

Unalias File ;

Remove the alias “File”. (This alias is defined in the Startup file.)

Alias command

“Command Aliases” in Chapter 3

Unailas 379

Syntax

Description

input

Output

Diagnostics

Status

Examples

See aiso

PEA E a EEpypp>pEpEpE>E>E>E>~E~=E=E=E~=_—E=E——=EE_EE_

ee r e a ANA

Unmount — unmount volumes

Unmount volume...

Unmounts the specified volumes. A volume name must end with a colon (:). If

volume is a number without a colon, it’s interpreted as a disk drive number. The

volumes cannot be referenced again until remounted. If you unmount the current

volume (the volume containing the current directory), then the boot volume

‘becomes the current volume.

None.

None.

Error messages are written to diagnostic output

The following status values are returned:

0 The volume was successfully unmounted
1 Syntax error i

2 An error occurred

Unmount Memos:

Unmount the volume titled Memos.

Unmount 1 2

Unmount the volumes in drives 1 (the internal drive) and 2 (the external drive). (The

command Eject 1 2 would unmount and eject the volumes.)

Eject and Mount commands

380 Unmount

Syntax

Description

Input’

Output

Diagnostics

Status

Example

See also

Unset — remove Shell variables

Unset [name... |

Removes any variable definition associated with name. (It’s not an error if no

definition exists for name.)

Caution: If no names are specified, all variable definitions are removed. This can
have serious consequences. For example, the Shell uses the variable {Commands} to

locate utilities and applications, and uses several other variables to set defaults. The
Assembler and Compilers use variables to help locate include files. (For details, see

“Variables Defined in the Startup File” in Chapter 3.)

The scope of the Unset command is limited to the current command file; that is,

variables in enclosing command files are not affected.

None.

None.

None.

A status value of 0 is always retumed.

Unset. CaseSensitive

Remove the variable definition for {CaseSensitive}. (This turns off case-sensitive
searching for the editing commands.)

Set and Export commands

“Defining and Redefining Variables” in Chapter 3

Unset 38]

Volumes — list mounted volumes

Syntax Volumes [-1] {-q] [vokeme... |

Description For each volume named, Volumes writes its name and any other information

requested to standard output The output is sorted alphabetically. A volume name

must end with a colon (:)—-if volume is a number without 2 colon, it’s interpreted as a

disk drive number. If volume is not given, all mounted volumes are listed.

input None.

Output Information about the specified volumes is written to standard output.

Diagnostics Error messages are written to diagnostic output.

Status The following status values are returned:

Q No errors
1 Syntax error

2 No such volume

Options -I List volumes in long format, giving volume name, drive (0 if
off-line), capacity, free space, number of files, and number of

directories.

-4 Don’t quote volume names that contain special characters. (The
default is to quote names that contain spaces or other special

characters.)

Examples Volumes -1

will write information such as:

HD: 3 19171K 14242K 290 33

Files ~Volumes 1°

List the files on the disk in drive 1 (the built-in floppy disk drive).

382 Volumes

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

Windows — list windows

Windows [-q]

Writes the full pathname of each file currently in a window: The names are written to
standard output, one per line, from backmost to frontmost.

None.

The list of open windows is written to standard output.

None.

Status value 0 is always returned.

-q Don’t quote window names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

Windows

List the pathnames of all open windows.

Print ({PrintOptions} `Windows`

Print all of the open windows, using the options specified by the {PrintOptions}
variable. This example uses command substitution: Because the Windows command
appears in backquotes C...`), its output supplies the parameters to the Print
command.

Begin

Echo For window in "*Windows*"

Echo ‘Open "{window}" | Set Status 0'
Echo End

End > SavedWindows

Windows 383

Write a command script, in the file SavedWindows, that will reopen the current set of

open windows. Note how Echo is used to create the script, and that the /O

redirection following End applies to ali of the enclosed commands. Also note the use

of quoting: The * Windows’ command is executed immediately; but, because it’s in

single quotes, the "{window}" variable isn’t expanded until the SavedWindows file is

executed. This technique is used in the Suspend script to save the list of open

windows.

384 Windows

-N

Appendix A

Macintosh Workshop Files

This appendix lists all of the files provided with the Macintosh Programmers
Workshop, including Macintosh Workshop Pascal and Macintosh Workshop C. The
first list is an inclusive list of all MPW files. (Volume names are shown in bold;
directory names begin and end with a colon.) Subsequent lists show the
recommended arrangements of these files for an HD-20 and for a set of 800K disks.

Distribution files

MPW1:

MPW: Shell MPW Shell

StartUp Startup comrnand file
StartUp.800K Startup file for 800K disk system
StartUp. XL Startup file for Macintosh XL
UserStartup User-specific startup file
Suspend Suspend command file
Resume Resume command file
Quit Quit command file
MPW.Help Command syntax descriptions (for Help command)

:System Folder:

Finder Finder

System System file (System 3.2 or later is required for MPW)

Appendix A : Macintosh Workshop Files J 85

MPW2:

SysErrs.Err Indexed error message file (used by the Shell and tools)

:Rincludes:
Types.r Common resource type definitions

MPWTypes.r MPW-specific resource type definitions
SysTypes.r System resource type definitions

:Tools:
Compare Text file comparison tool
Count Line count, character count tool

Entab Entabbing tool

Lib Library construction tool

Line Command file for selecting error line

Link Linker

Make Program builder
Print Print tool

Rez Resource Compiler

Search ~ Search tool (regular expression processor)

MPW3:

:More Tools:
Canon Canonical spelling tool

Canon. Dict Dictionary file for Canon

CvtObj Lisa Workshop object file conversion tool
DeRez Resource Decompiler

DumpCode Code formatting tool
DumpObj Object file formatting tool
FileDiv File division tool
MDSCvt MDS Assembler conversion tool

MDSCvt.Directives Directives file for MDSCvt

RezDet Resource detective

TLACvt TLA Assembler conversion tool
TLACvwt. Directives Directives file for TLACvt

MPW4:

Asm 68xxx Assembler

:Applications:
ResEdit Interactive resource editor

386 Appendix A : Macintosh Workshop Files

:Debuggers:

MacsBug

MacsBug.XL

:AExamples:
Instructions.a

MakeFile.a

Sampie.a
Sample.r
IntEnv.a

Signal.a
Count.a

Stubs.a

Memory.a

:AIncludes:

ATalkEqu.a

FixMath.a

FSEqu.a

FSPrivate.a

Graf3DEqu.a
HardwareEqu.a
IntEnv.a

ObjMacros.a

PackMacs.a

PrEqu.a

Private.a

QuickEqu.a

SANEMacs.a

SCSIEqu.a

Signal.a
SonyEqu.a

SysEqu.a

SysErr.a

TimeEqu.a

ToolEqu.a

Traps.a

MacsBug debugger
Macintosh XL version of MacsBug

Instructions for building assembly-language examples
Makefile for building assembly-language examples
Source for Inside Macintosh sample application

Resource definitions for Sample application
Integrated Environment interface used in Count tool

Signal-handler interface used in Count

Source for MPW Count tool
Dummy library routines (used to override library

Routines not used by MPW tools)

Source for Memory desk accessory

AppleTalk equates
Fixed-point mathematics routines
File system equates, including hierarchical file system (HFS)
File system low-level equates
Graf3D interface
Hardware equates
Integrated Environment (MPW tool) equates
Macros for object-oriented programming
Package macros, including List Manager

Printing equates

Low-level system equates

Quickdraw equates
SANE (Standard Apple Numerics Environment) macros
SCSI port equates and trap macros
Signal handler equates
Low-level Sony disk driver equates

System equates, including HFS
System errors
Time Manager queue element and local variable structure

Macintosh toolbox equates
Trap macro definitions for toolbox calls

Distribution files

:Libraries:

AppleTalk AppleTalk resources
SERD Serial Driver resources
DRVRRuntime.o Driver runtime library

Interface.o “Inside Macintosh” interface library

ObjLib.o Object-oriented programming library
Runtime.o Runtime library for assembly language and Pascal
ToolLibs.o MPW tool library (spinning cursor, error manager)

MPW Pascal files

Pascall:

Pascal Pascal Compiler
PasMat Pascal print formatter (“pretty-printer™)
PasRef Pascal cross-referencer

Pascal2:

:PExamples:
Instructions. p Instructions for building example programs
MakeFile.p Makefile for Sample program
Sample.p Sample application
Sample.r Resource description file for Sample.p
ResEqual.p Sample MPW tool
Stubs.a ’ Dummy library routines (used to override library routines not used by

MPW tools)

Memory.p Sample MPW tool
Memory.r Resource description file for Memory.p
ResEd68K.a Routines for extending ResEdit
ResEd.p Routines for extending ResEdit
ResXXXXEd.p Sample resource editor

388 Appendix A : Macintosh Workshop Files

7

CExamples:
Instructions.c

MakeFile.c

Sample.c
Sample.r

Countc

Stubs.c

Memory.c

Memory.r

:Platerfaces:
AppleTalk.p AppleTalk interface

CursorCtl.p MPW cursor-control interface

ErrMgr.p MPW error manager interface

FixMath.p Interface for fixed-point mathematics routines

Graf3D.p Graf3D interface

IntEnv.p Integrated Environment (MPW tool) interface

MacPrint.p Printing interface
MemTypes.p Common types
OSInt£.p Operating system interface
PackIntf.p Packages interface
PasLibIntf.p Pascal library. interface
Quickdraw.p Quickdraw interface
SANE. p SANE numerics interface
SCSIIntf. p SCSI manager interface
Signal.p Signal-handling interface
Toolintf.p Macintosh toolbox interface

:PLibraries:
PasLib.o Pascal language library, included built-ins and I/O

SANELib.o SANE numerics library

MPW C files

C Compiler

Instructions for building examples
Makefile for building examples

Source for Sample application
Resource specifications for Sample application

Source. for Count tool
Dummy library routines (used to override library routines not used by

MPW tools)
Source for Memory desk accessory
Resource specifications for Memory desk accessory

MPW C files 389

390

Cincludes:

AppleTalk.h

Controls.h

CType.h
Desk.h

Devices.h

Dialogs.h

Diskinit.h

Disks.h

ErrNo.h

Errors. h

Events.h

FCntLh

Files.h

FixMath.h

Fonts.h

Graf3D.h
IOCti.h

Lists.h

Math. h

Memory.h

Menus.h

OSEvents.h

OSUtils.h

Packages.h

Printing,h

Quickdraw.h
Resources.h

Retrace.h

SANE.h

Scrap.h
SCSLh

SegLoad.h

Serial.h

Set}mp.h
Signal.h

Sound.h

StdIO.h

Strings.h

TextEdit.h

Time.h

ToolUuls.h

Types.h

Values.h

VarArgs.h

AppleTalk header file
Control Manager header file
Character types header file
Desk Manager header file
Device Manager header file
Dialog Manager header file

Disk Initialization header file
Disk Driver header file
Standard C Library error numbers

Macintosh libraries error numbers
Toolbox Event Manager header file
File controis header file
File Manager header file
Fixed-point math header file
Font Manager header file
Graf3D header file
I/O Control header file
List Manager header file
Mathematical functions header file
Memory Manager header file
Menu Manager header file
Operating System Event Manager header file’
Operating System Utilities header file
Packages header file

Print Manager header file
Quickdraw header file
Resource Manager header file
Vertical Retrace header file
SANE header file
Scrap Manager header file
SCSI Manager header file
Segment Loader header file
Serial Driver header file
Setjmp header file
Signal handler header file
Sound Driver header file
Standard I/O header file

String conversion header file
TextEdit header file
Time Manager header file
Toolbox Utilities header file
Common types header file
Arithmetic values header file
Variable argument list header file

Appendix A : Macintosh Workshop Files

Windows.h Window Manager header file

:CLibraries:

Clnterface.o Macintosh interface library for C only
CRuntimeé.o C runtime library: "Main" entry point, data initialization, Quickdraw

data, AS, low-level

I/O, built-in routines for C, signal handling
CSANELib.o SANE numerics library
Math.o Math functions library
StdCLib.o Standard C Library

LSSS——[_[S rrr

Hard Disk 20 configuration
:System Folder:

Finder

System

MPW:

MPW Shell

StartUp

UserStartup
Suspend
Resume

Quit

MPW.Help
SysErrs.Err

:RIncludes:

Types.r

SysTypes.r

MPWTypes.r

Hard Disk-20 configuration 39}

:Tools:

Asm

C

Canon

Canon.Dict

Compare

Count

CvtObj
DeRez

DumpCode
DumpObj :

Entab

FileDiv

Lib

Line

Link

Make
MDSCvt

MDSCvt. Directives

Pascal

PasMat

PasRef

Print

Rez

RezDet

Search

TLACvt

TLACvt. Directives

:Applications:

ResEdit

:Debuggers:

MacsBug

:AExamples:
Instructions.a

Makefile.a
Sample.a

-Sample.r
IntEnv.a

Signal.a
Count.a

Stubs.a
Memory.a

92 Appendix A : Macintosh Workshop Files

fms

:AIncludes:

ATalkEqu.a
FixMath.a

FSEqu.a
FSPrivate.a

Graf3DEqu.a

HardwareEqu.a
ObjMacros.a

PackMacs.a
PrEqu.a

Private.a

QuickEqu.a
SANEMacs.a

SCSIEqu.a
SonyEqu.a

SysEqu.a
SysErr.a

TimeEqu.a

ToolEqu.a
Traps.a

:Libraries;

AppleTalk
SERD

Interface.o

ObjLib.o

Runtime.o

ToolLibs.o

DRVRRuntime.o

:PExamples:
Instructions.p

MakeFile.p
Sample.p
Sample.r

ResEqual.p

Stubs.a

Memory.p
Memory.r

DRVRHead.a

ResEd68K.a
ResEd.p

ResXXXXEd.p

Hard Disk-20 configuration

:PInterfaces:

AppleTalk.p
CursorCtl.p

ErrMgr.p

FixMath.p
Graf3D.p
IntEnv.p

MacPrint.p

MemTypes.p

OSIntf. p
PackIntf.p
PasLibIntf.p
Quickdraw. p
SANE.p
$CSIintf.p
Signal.p
Toolintf.p

:PLibraries:

PasLib.o

SANELib.o

:CExamples:
Instructions.c

MakefFile.c

Sample.c
Sample.r
Count.c
Stubs.c

Memory.c

Memory.r

394 Appendix A : Macintosh Workshop Files

:CIncludes:

AppleTalk.h

Controls.h

CType.h
Desk.h

Devices.h

Dialogs.h

Disks.h

ErrNo.h

Errors.h

Events.h

FCntl.h

Files.h

FixMath.h

Fonts.h

Graf3D.h
1OCtL. A

Lists.h

Math.h

Memory.h
Menus.h

OSEvents.h

Osutils.h

Packages.h

Printing.h

Quickdraw.h
Resources.h

Retrace.h

SANE.h

Scrap.h

SCSLh

SegLoad.h

Serial.h

SeUmp.h
Signai.h

Sound.h

StdIO.h

Strings.h

TextEdit.h

Time.h

ToolUtils.h

Types.h

Values.h

VarArgs.h

Windows.h

Hard Pisk-20 configuration 395

:CLibraries:

Cinterface.o

CRuntime.o

CSANELib.o

Math.o

StdCLib.o

800K disk configuration

MPW:

MPW Shell
StartUp (renamed from Startup.800K)
UserStartup

Suspend

Resume

Quit i

MPW. Help

SysErrs.Err

:Debuggers:

MacsBug

:RIncludes:
Types.r

SysTypes.r

MPWTypes.r

:Tools:

Line

Link

Make

Print

Rez

etc.

396 Appendix A : Macintosh Workshop Files

ca TN

:Libraries:

AppleTalk
SERD

Interface. o

ObjLib.o

Runtime.o

ToolLibs.o

DRVRRuntime.o

:System Folder:
Finder

System

Note: You can free up more disk space by removing the Finder and making the MPW
Shell the startup application.

LR

Asm:

Asm

:AExamples:

Instructions.a

MakeFile.a

Sample.a
Sample.r

IntEnv.a

Signal.a

Count.a

Stubs.a

Memory.a

800K disk configuration 397

:Alncludes:
ATalkEqu.a
FixMath.a

FSEqu.a

FSPrivate.a
Graf3DEqu.a
HardwareEqu.a

ObjMacros.o

PackMacs.a

PrEqu.a

Private.a

QuickEqu.a
SANEMacs.a

SCSIEqu.a
SonyEqu.a
SysEqu.a

SysErr.a

TimeEqu.a
ToolEqu.a

Traps.a

pp a a

Pascal:

Pascal

:PExamples:
instructions. p

MakeFile.p
Sample.p
Sample.r
ResEqual.p

Stubs.a
Memory.p

Memory.r

DRVRHead.a
ResEd68K.a
ResEd.p

ResXXXXEd.p

398 Appendix A : Macintosh Workshop Files

a

TSR

:PInterfaces:
AppleTalk.p

CursorCtl.p
ErrMgr.p

FixMath.p
Graf3D.p

IntEnv.p

MacPrint.p

MemTypes.p

OSIntf.p
PackIntf.p
PasLibIntf.p
Quickdraw.p

SANE. p
SCSIintf.p
Signal.p
Toolintf.p

:PLibraries:

PasLib.o

SANELib.o

eee
C:

Č

:CExamples:

Instructions.c

MakeFile.c

Sample.c
Sample.r

Count.c

Stubs.c

Memory.c

Memory.r

800K disk configuration 399

:Cincludes:

AppleTalk.h
Controls.h

CType.h
Desk.h

Devices.h

Dialogs.h

Disks.h

ErrNo.h

Errors. h

Events. h

FCotl.h

Files.h

FixMath,h

Fonts.h

Graf3D.h

1OCth.h

Lists.h

Math.h
Memory.h

Menus.h

OSEvents.h

OSUtils.h

Packages.h
Printing.h

Quickdraw.h

Resources.h

Retrace.h

SANE.h

Scrap.h

SCSI.h

SegLoad.h

Serial.h

SetJmp.h
Signal.h

Sound.h

StdiO.h

Suings.h

TextEdit.h

Time.h

ToolUtils.h

Types.-h
Values.h

VarArgs.h

Windows.h

400 Appendix A : Macintosh Workshop Files

:CLibraries: ©

Claterface.o

CRuntime.o

CSANELib.o

Math.o

StdCLib.o

800K disk configuration 40)

Appendix B

Selections and Regular

Expressions

This appendix formally defines the syntax of selections and regular expressions as

used in the Shel! command language. It also lists the Option-key characters used in

selections and regular expressions. For examples of their use, see Chapter 4,

“Advanced Editing.”

————

Selections

Selections are passed as arguments to the editing commands. They’re defined in

Table B-1.

Tabie 8-1
Selections
en

selection (specifies a selection or insertion point)
current selection

number line number :

! number number lines after the end of the current selection

| number number lines before the start of the current

selection

position position (defined below)

pattern pattern (defined below)

(selection) selection grouping

selection : selection both selections and everything in between

position (specifies an insertion point)
° position before the first character in the file
a position after the last character in the file
A selection position before the first character of selection
selection À position after the last character of selection
selection ! number position number characters after the end of selection
selection | number position number characters before the beginning of selection

pattern (specifies characters to be matched)
/ entireRegularExpr / tegular expression—search forward (see Table B-2)
\ entireRegularExpr \ regular expression—search backward

This is the precedence of the selection operators, from highest to lowest:

Regular expressions
Regular expressions are used for pattern matching within /.../ and \...\. (See
“pattern” in Table B-1.) Regular expressions are defined in table B-2.

Table B-2
Regular expressions -
A ee ee

entireRegularExpr
° regularExpr regular expression at beginning of line
regularExpr ce regular expression at end of line
reguiarExpr regular expression

regularExpr

simpleExpr untagged regular expression
taggedExpr tagged regular expression
literal quoted string literal
regularExpr; regularExpr> regular-expr; followed by regular-expr>

simpleExpr

(regularExpr) regular expression grouping
characterExpr single-character regular expression
simpleExpr’ regular expression zero or more times

Reguiar Expressions

simpleExpr+ regular expression one or more times

simpleExpr «number» regular expression number times

simpleExpr «number,» regular expression at least number times

simpleExpr« n;, No» regular expression at least 7, times and at

most n, times

taggedExpr

(regularExpr)® digit the string matched by the regudar-expr can be

referred to as @digit

literal
‘string’ each character in string is taken literally

"string" éach character in string is taken literally, except

for ð substitutions

characterExpr

character character (unless it’s listed as special following

the table)

dcharacter @ defeats special meaning of following character

? any character except Return

= any string not containing a Return, including the

null string (this is the same as ?*)

[characterList] any character in the list
[= characterList } any character not in the list

character-List

} “J” first in list represents itself
~ “—” first in list represents itself

characier character

characterList character list of characters
character, — character character range from character, to character

inclusive

“ Note: The regular expression operators ?, =, [..., 5, +, and «...» are also used

in filename generation.

The following characters have special meanings:

d always special, except within '...'

A E O special everywhere except within {...], '...', and "..."

B special only after a right parenthesis character,)

. special as first character of entire regular expression

oo special as last character of entire regular expression

AN special if used to delimit regular expression

The operators are listed below beginning with the highest-precedence operators.

404 Appendix B: Selections and Regular Expressions

? = * + [] «» @

concatenation

hd oo

Option-key characters
The following Option-key characters are used in Sélections and regular expressions:
Character Key Meaning
§ l Option-6 current selection character
ð Option-D escape character
= i Option-X any string

. Option-8 beginning of line or file
œ Option-5 end of line or file
i Option-1 minus number of lines or spaces
A Option-J position

® Option-R tag operator
« Option-\ encloses number of repetitions
» Shift-Option-\ encloses number of repetitions

Option-key characters 405

Appendix C

MPW Character Reference

This appendix gives a brief summary of the special operators used in the Macintosh

Programmer’s Workshop. For characters that are part of the extended character set,

Option-key combinations are also given. For details on the action of these

operators, see Chapters 3 and 4.

Table C-]
MPW operators

a a E a a a

Shell characters:

Operator -

space

tab

return

i

&&
It

(commands)

comment
achar

'chars'

"chars"

/chars/

\ chars\

ivariable}

“command

< filename

> filename

>> filename
2 filename

22> filename

Meaning

Separates words
Separates words
Separates commands
Separates commands
Pipe—separates commands, piping output to input
“And”—separates commands, executing second if first succeeds
“Or"—separates commands, executing second if first fails
Group commands
Ignore comment
Escape—literalizes char, dn, dt and of are special (9 is Option-D)
“Hard quotes"—titeralize chars
“Soft quotes’——literalize chars except for {...} (variable substitution),
~.. (command substitution), and ð (escape)
Regular expression quotes—literalize /chars/ except for {...},°..., and ð
Regular expression quotes—literalize \chars\ except for {...}, ~...°, and ð
Substitute variable
Substitute output of command
Redirect standard input
Redirect standard output, replacing contents of filename
Redirect standard output, appending to Alename
Redirect diagnastics, replacing contents of filename (is Option->)
Redirect diagnostics, appending to filename @ is Option->)

Selections (editing commanas):

Aselection

SelectionA

selectionin

selectiongn

regExpr/

\ regExpr\

Current selection (§ is Option-6)
Line number n
n lines after §
n lines before § (i is Option-1)
Beginning of file (e is Option-8)
End of file (ce is Option-5)
Beginning of selection (A is Option-))
End of selection (A is Option-)
n characters before selection
n characters after selection G is Option-1)
regExpr after current selection
regExpr before current selection

ia © er)
Appendix C: MPW Character Reference

selection selection selection, selection, and in between

Regular expressions (and filename generation):

char-

dchar

‘char...’

?

(characterLisi
[-characterLtst|
regExpr”
regExpr+

regExpr« ro

regExpr«n,»
regExXpren; 1»

CregExpr)
(regExpnen

regixpr,regExpry
regExpr

regExpreo

Shell numbers:

Sunn

Oxnnn

Match char
Literal char (ð is Option-D)
Literal chars
Any character
Zero or more chars (short for ?*) (is Option-X)
Any character in characterList
Any character not in characterList (> is Option-L)

regExpr zero or more times

regExpr one or more times
regExpr n times (« and » are Option-\ and Option-Shift-\)

n or more times
regExpr n; to m times

regExpr (grouping)
Tagged regExpr, where 0<59 (® is Option-R)
regExpr followed by regExpr2

regExpr at beginning of line (+ is Option-8)
regExpr at end of line (e is Option-5)

Hexadecimal number

Hexadecimal number

408 Appendix C: MPW Character Reference

Shell operators (by precedence):

(expr)

! NOT n

+ Div

% MOD

Expression grouping
(unary) arithmetic negation
(unary) bitwise negation
(unary) logical negation (= is Option-L)
Multiplication
Division (+ is Option-/)
Modulus

Addition
Subtraction
Shift left
Shift right dogical)
Less than
Less than or equal Œ is Option-<)
Greater than
Greater than or equal (2 is Option->)
Equal
Not equal (+ is Option-=)
Matches regular expression
Does not match regular expression
Bitwise AND
Bitwise XOR

Bitwise OR
Logical AND

Logical OR

Appendix C: MPW Character Reference 409

Appendix D

Resource Description Syntax

Syntax Notation xx

Structure of a Resource Description File xx
Include — include resources from another file x

Read — read data as a resource x

Data — specify raw data x
Type — declare resource type x

Data-types
Fill-type

Alignment

Switch-type
Array-type

Resource — specify resource data x

Preprocessor Directives xx

Syntax xx

Identifiers x
Token Delimiters x

Compound Types x
Expressions Xx

Numbers and Literals x

Variables x

Strings X

This appendix defines the form of a resource description file, used by the Resource
Compiler and Decompiler. For a full explanation, see Chapter 6, “Using the
Resource Compiler and Decompiler.”

Syntax Notation

The following syntax notation is used in this appendix:

terminal Must be entered as shown.
non-terminal May be replaced by anything matching its definition.
AlBIC Either A or B or C. (Vertical stacking also indicates an either/or choice.)
(...}? Enclosed element is optional, but may not be repeated.
{...}+ Enclosed element may be repeated one or more times (not optional).
bat Enclosed element may be repeated zero or more times.
{...}9 Enclosed element must be repeated n times.

If one of the syntax elements must be included literally, it is shown enclosed in single
quotes; for example,

{‘(' data-string ‘}) P-

—that is, a data-string is optional, and must be enclosed in braces, if included.
Otherwise, all punctuation (; , ' " $ =) must be entered as shown. The non-
terminal symbols used are fully defined under “Syntax” at the end of this appendix.

eee ae

Structure of a resource description file
The Resource Compiler input file consists of any number of statements, where a
Statement may be any of the following:

include Include resources from another file.

read Read the data fork of a file and include it as a resource.
data Specify raw data.

type Declare resource type descriptions for subsequent resource statemenis.

resource Specify data for a resource type declared in a previous type statement.

Structure of a resource description file 441

*

include — include resources from another file

include file { include-selector)? ;

include-selector ::= resource-type {‘(' LD-spectfier'')’ ? ;

not resource-type ;
resource-typel as resource-type2 ;

resource-typel ‘{’ resource-ID | resource-name ‘)’
as resource-type2 ‘{’ resource-specifier '')’ ;

file ::= string

[D-specifier ::* ID-range
resource-name

[D-range ::" ID {: ID}

resource-specifier ::= resource-LD {, resource-name }? { resource-attributes }?

resource-specifier ::= resource-ID {, resource-name }? { resource-attributes }?

resource-ID ::= word-expression

resource-name ::= String

resource-atiributes::* resource-iiteral-attributes | resource-numeric-attributes

resource-numeric-attributes ::= byte-expression

resource-literal-attributes := ({,sysheap | ,appheap }P

{,purgeable | ,nonpurgeable }?

{, locked | , unlocked }?
{, preload |_,nonpreload }?

Read — read data as a resource

read resource-type ‘('resource-spectfier ')’ file ;

Data — specify raw data

data resource-type ‘('resource-specifier')’ ‘{' data-string{; P ‘Y ;

tS

Type — declare resource type

type resource-type { ‘('ID-range‘)’ P'U (type-statement ; P'Y ;

resource-type ::= long-expression

42 Appendix D: Resource Description Syntax

Am

y

type-statement::= daia-type

fill-type
alignment
switch-type

array-type

Data-types

data-type ::= data-type-spectfier { symbolic-declaration | = declaration-conscant }?
data-type-specifier ::= char

string {‘{' length‘}’ P
pstring {‘[’ length '}’}?
cstring {‘{’ length ‘]’'}?
numeric-type-specifier
point

rect

length::= expression

numeric-type-specifier ::=

boolean

{unsigned }?{ radix}? numeric-type
radix ::= binary

octal

decimal
hex

literal

numeric-type ::= byte

integer

longint

bitstring ‘{’ length)’
Symbolic-declaration ::= range-block { , range-block }*
range-block -:= identifier { = deciaration-constant } { , identifier }*
declaration-constant ::= expression

potnt-constant

rect-constant
String

Fill-type

fill-type::= fill fill-size ('[' expression '}’ }

fill-size = bit | nibble | byte | word ! long

Alignment

alignment ::= align align-size

Structure of a resource description file 413

align-size::=

Switch-type

switch-type:: =

switch-body ::=

case-name ::=

case-body ::™

key-constant-statement ::=

Array-lype

array-type::™

array-specifier.:=

array-name::=

type-body ::=

nibble | byte | word | long

switch ‘('switch-body'}’

{case case-name : { case-body ; }* }+

identifier

{ type-statement ; }* key-constant-statement ; { type-statement ;

key data-type-specifier = declaration-constant

{wide P? array { array-specifier }? type-body

array-name
‘{'expression')'

identifier

‘C (type-statement }* ‘}’

Resource — specify resource data

resource resource-type ‘(' resource-specifier ‘)’ = data-body

data-body ::=

data-statement ::=

switch-data ::=

array-data ::=

array-element ::=

‘{' { data-statement { , data-statement }* }?‘}’

expression

point-constant
rect-constant

switch-data

array-data

case-name data-body

q { arvray-element (; array-element }* }?'}

{ data-statement (, data-statement }* }?

————————
ee

Preprocessor Directives

The following preprocessor directives are available.

414 Appendix D: Resource Description Syntax

#tdefine identifier { define-string }? newline
#undef identifier newline
#if preprocessor-expr
#elif preprocessor-expr
#else

#endif

#ifdef identifier
#ifndef identifier

preprocessor-expr is the same, as expression with the following additional expressions:

defined ‘(identifier)’

defined identifier

SSS a
e rer te e

eS eee

Syntax

This section defines the non-terminal symbols used in the previous sections.

Sagan enn a
Identifiers

An identifier may consist of letters (A-Z, a-z), digits (0-9), or the underscore
character (_). Identifiers may not start with a digit, otherwise any mix of letters,
digits, and underscores is acceptable. Identifiers are not case sensitive. An identifier
may be any length. i

Token delimiters

token-delimiter ::= { space | tab | newline | comment }+
comment ::= ‘/*. { printing-character }* '* /?

Compound types

point-constant ::= ‘Vexpression , expression ‘}’
rect-constant ::= 'C'EXPrESsion , expression , expression , expression ‘}'

Syntax 415

Re aM

Expressions

bit-expression ::* expression

byte-expression ::= expression

word-expression ::= expression

long-expression ::= expression

expression ::= integer-constant

iterai-constant

expression > expression

expression < expression
expression - expression
expression + expression
expression * expression
expression / expression

expression % expression

system-function ::= $$countof ‘(' array-name'):

en

Numbers

integer-constant ::= decimal-constant
octai-constant

binary-constant
hexadecimal-constant

416 Appendix D: Resource Description Syntax

decimal-constant ::=

octal-constant ::=

hexadecimai-constant ::=

binary-constant ::=

decimal-marker:=

Aex-marker m

binary-marker ::=

octal-digit ::=

hex-digtt ::=

binary-digt

iiteral-constant ::=

nonzero-digit { digit }*
O { octal-digit }*
hex-marker { hex-digit }+
binary-marker { binary-digit }+

Od | OD

Ox 1 0x1 s

0b | 0B

0111213ł4151617

0)1/2131415161718191
AIBICIDİEIFI

albicidlelf
0l1 :

' { character} '

Variables

string-vartable :.=

numeric-vartable ::=

$$Version

$$Date

$$Time

$$She1l1'‘('" Shell-variable-name"')’

$$Resource' (‘file, resource-id, resourceName-or-ID*)’

resource-id

resource-name

resourceName-or-ID::=

$$Hour

$$Minute

$$Second

$$Year

$$Month

$$Day

$SWeekday

Strings

String ::=

simple-string .:*

hex-string ::=

simple-string

hex-string
String-variable
string string

" { character}* "

$"{ hex-digit hex-digit }* "

Syntax 417

character ::= printing-character | escape-character

escape-character ::= \ escape-code

escape-code ::= character-escape-code | numeric-escape-code

character-escape-code := nitibiril¢givi2Ii\l'l*

numeric-escape-code ::= { octal-digit }3
decimal-marker { decimal-digit }3
hex-marker { hex-digit }2
binary-marker { binary-digit }8

418 Appendix D: Resource Description Syntax

Appendix E

File Types, Creators, and

Suffixes

Files types and creators

Table E-1 lists MPW file types and creators.

Table E-1
File types and creators

File Type Creator

Appendix E: File Types, Creators, and Suffixes

,

MPW Shell ‘APPL' "MPS ' (MPSspace)

Tools 'MPST' 'MPS '

Text files 'TEXT' "MPS '

Object files ‘OBJ ' 'MPS '

Pascal load/dump "DMPP! 'MPS'

Assembler load/dump 'DMPA' ‘MPS '

File suffixes
File suffix conventions are. as follows.

Text files:

nameé.a assembly-language source file

name.a.lst Assembler listing file
name.p Pascal source file
name.c C source file
name.h = C header file
name.t resource description file (Resource Compiler input)

Text files are identified by their file type (TEXT) rather than by a special suffix.
Several applications (including MacWrite, MDS Edit, and the MPW Shell) can create
and edit files of type TEXT. The creator 'MPS ' indicates to the Finder that the MPW

Shell is the application to launch when a text file is opened.

Object files:

name.a.o object file created by the Assembler
name.p.o object file created by the Pascal Compiler
nName.c.o object file created by the C Compiler

name.o object file (library) created by Lib; object files shipped with

MPW

Compilers add the suffix *.0” to the source file name to construct the object file
name. The language suffix is left in the name in order to prevent name conflicts for
programs whose components are written in several languages. (For example, a

program might have source files MacGismo.a and MacGismo.c and object files

MacGismo.a.o and MacGismo.c.o.)

420 Appendix E: File Types, Creators, and Suffixes

Appendix F

Writing an MPW Tool

Shell facilities xx

Parameters x

Shell variables x

Standard 1/O channels. x

VO buffering x

VO to windows and selections x

Signal handling x
Exit processing x

Status codes

Restrictlons xx

Initialization x

Memory management x

Heap x

Stack x

Windows, graphics, and events xx

Conventions xx

Appendix F: Writing an MPW Tool 421

This appendix provides information specific to writing an integrated MPW tool.
You'll also need to refer to the following:

æ “Putting Together an MPW Tool” in Chapter 7 for information about the
mechanics of linking and installing a tool.

The appropriate MPW language reference manual for details of the Integrated
Environment routines available in the various language libraries. (The

Integrated Environment is 2 set of routines, modeled on the C language, that
provide parameter passing, access to variables, and other functions to MPW

tools.)

Shell facilities

Tools running within the MPW Shell environment are provided with many facilities,
including

parameter passing

access to Shell variables

a set of pre-opened files for text-oriented input and output

I/O to windows and selections

a means for returning status results

signal handling (for user aborts, and so on)

exil processing

Parameters

Parameters are passed to tools by the Shell. Every program is passed at least one

parameter. the name of the program itself. This parameter is always the first

parameter (technically, parameter 0) and is useful for error messages or other
special action.

The text that follows the command name on the command line is first analyzed by

the Shell for any special processing, such as filename generation or variable

substitution. (See “How Commands Are Interpreted” in Chapter 3.) This text is then
split up into individual words and placed in a convenient data structure for
programmatic access:

L 22 Appendix F: Writing an MPW Tool

C: In C, the main program is actually passed two parameters,

named argc, the argument count, and argv, the argument

vector, The value of argc includes the command name

(parameter 0), and is thus always one more than the number

of parameters to the command. argv is a pointer to a zero-

terminated array of pointers to the parameters, each of

which is in C string (zero-terminated) format.

(See Figure F-1.)

Pascal: In Pascal, the parameters are accessible as the unit global
variables arge and argv from the IntEnv (integrated

Environment) unit. As in C, the value of arge is one more
than the parameter count; argv is a pointer to an array of

Pascal string pointers.

Assembly language: The Integrated Environment routine, _RTInit, can be used
to access the command parameters in assembly language.

The addresses of argv and argc are passed to _RTInit,

which initializes them. See Appendix I of the MPW
‘Assembler Reference for details about this routine.

` C and Pascal examples are shown in Figure F-1.

C Sample.c -o Sample Pascal Sample.p ~-o Sample

Figure F-1
Parameters in C and Pascal

Shell facilities 423

Environment (Shell) variabies

The MPW Shell maintains a set.of state variables that can be made available to tools
with the Export command. When a tool is nin, the Shell makes a copy of the names

and string values of all exported variables and passes this list to the program. The
tool can then determine the value of a variable by one of two methods:

a Doing a linear search of the list of variables until the desired variable name is

found, or

a Using the getenv function.

Because only a copy is passed, a tool cannot alter the Shell's value of a variable.

C: Shell variables are accessible in C via the third parameter to
the main program, called envp (the environment pointer).

envp is a pointer to a zero-terminated array of pointers to
name/value C-string pairs. (Each pair is of the form
name@valued.) The C library provides the getenv routine,
which, given a variable name, looks up its value.

Pascal: Pascal programmers are provided with another [ntEnv unit
global variable, also called envp. The structure used is the
same as that for C, except that pointers to strings are forced
to even byte boundaries by zero padding, if necessary. To
facilitate the lookup of values for given Shell variables, a

routine called IEGetEnv is provided in the IntEnv unit.

Assembly language: The Integrated Environment routine, _RTInit, can be used

to access Shell variables in assembly language. The address
of envp is passed to _RTInit, which initializes it. You can

choose Pascal or C strings. You can use getenv for C
strings, or IEGetEnv for Pascal strings (from the PasLib
library). See Appendix I of the MPW Assembler Reference
for details on calling _RTInit.

Standard input/output channels

Before starting a tool, the Shell sets up three text I/O channels that the tool can use to

communicate with the outside world. These are

a standard input

m standard output

u diagnostic output (standard error)

324 Appendix F: Writing an MPW Tool

By default, these channels are connected to the “console” (that is, windows on the
screen). Program input may be typed (or selected) and entered; program output
appears immediately after the command. This input and output may be taken from
or. directed to other files by specifying VO redirection (<, >, >>, 2, 22) on the
command line. When the Sheil encounters the 1/O redirection notation, it opens or
creates the necessary files, removes the redirection notation from the command line
So that it doesn’t appear in the program’s parameter list, and then arranges for the
open files to be passed to the program. When the tool finishes, the Shell flushes any
buffered output and closes the files. l

1/0 buffering

When using I/O routines provided by the language libraries, varying degrees of
buffering are expected to occur on the standard VO channels:
s Input from the console is buffered until the Enter key is pressed. If there is a

selection when Enter is pressed, the selected text is used to satisfy the console read
request; otherwise, the entire line that contains the insertion point is given to the
reader.

Note: The MPW method of reading input creates a difficulty for interactive tools
that write prompting text and pause to read a response entered on the. same line:
The tool will receive the prompt back as part of the line read, unless there was a
selection when Enter was pressed.

a When input is taken from a file, the I/O package will, by default, read the data from the disk in 1K blocks.

a Text written to standard output is also buffered 1K ata time before being sent to a
file or to the console. (As a convenience, when a read request is issued from the
console, all output buffers are flushed so that any prompting text will appear before the program pauses waiting for input.)

= Text written to the diagnostic channel is buffered one line at a time, so that error
messages and progress information appear in a timely manner while the program
is executing.

Note that this buffering can cause apparently anomalous behavior: In particular, if
both standard output and diagnostics are being sent to the console, the order of the
Output on the screen may not match the order in which the data was written, because
of differences in when the separate buffers are flushed, as illustrated in Figure F-2.
You can circumvent this problem by flushing standard output before writing to
diagnostic output.

Kh) an Shell facilities 4

“ Note: Figure F-2 shows the output conventions in C and Pascal. Assembly-

language programmers must do their own buffering, or call C or Pascal routines.

File
1K Buffe

Standard Inpu

8.) eee
Standard Diagnosing Build Line Buig

Console 2 Patent teat

Figure F-2
1/0 buffering

C The standard I/O files are available for reading or writing in

C, via the file descriptors 0, 1, and 2, or the StdIO stream

descriptors stdin, stdout, stderr. These descriptors

are fully documented in the MPW C Reference.

Pascal: In Pascal, the program parameters Input and Output

correspond to the standard input and output channels. A
text file variable called diagnostic, which is connected to
the standard diagnostic channel, is available from the

IntEnv unit. The use of these is documented in detail in the

MPW Pascal Reference.

I/O to windows and selections

The MPW environment also provides tools the ability to read and write to windows or

to selections within windows. No special programming is required to use this feature.

The MPW Shell monitors file system calls, and intercepts those that refer to a file that

is currently open as a window. These calls are redirected automatically to the window

rather than the file. (Thus, any modifications to the file do not become permanent

unul the window is saved.)

Accessing selections within windows is equally transparent to programs. All that is

required is that the filename contain the selection suffix (.§). Reading from a

selection is the same as reading from a file, and the beginning and end of the

selection are treated as the bounds of the file. However, writing to a selection

replaces the selection and has the interesting property that the data written is inserted

into the file, rather than overwriting the data that follows.

426 Appendix F: Writing an MPW Tool

Because window and selection I/O is handled automatically by the MPW Shell, tools
should simply assume that they are always dealing with files.

Signal handling

The MPW environment provides a set of routines to handle signals. A signal is an
event that diverts program control from its normal execution sequence,

% Note: The only signal currently supported is Command-period, the standard
Macintosh command for terminating the execution of an operation.

Signals can be caught, held and released, and ignored. The default action of any
signal is to close all open files, execute any exit procedures (described below in “Exit
Processing”), and terminate the program. If, however, your program requires
special handling of a signal, or chooses to ignore it, you can use the procedure
sigset to replace the default signal-handling procedure with your own procedure.
Your program can also temporarily suspend action on a signal (for instance, before
entering a critical section of code) by calling sighold. You can restore the signal by
calling the procedure sigrelease, whereupon the signal-handling procedure will
take affect if the signal was raised during the hold period. Your prograrn may also
pause.untl one or more signals are raised by calling the procedure sigpause. See
the MPW language reference manuals for the detaiis on how to use these routines.

Cn EE a E E e E E E
Exit processing

A program often requires some special processing before terminating. You can use
the procedure onexit to register a procedure to be called at program termination or
when the exit procedure is called. This procedure guarantees your program a chance
to do any cleanup before terminating. This is especially useful for cleaning up after
an uncaught signal.

Status codes

Every tool is expected to return a status code to the Shell when it terminates. The
Shell inspects this result—if the status code is nonzero and if the Shell variable {Exit}
is nonzero (the default), the Shell terminates the execution of the current command
file. The Shell also converts the result to string form and creates a Shell variable
called {Status} with that value. The variable can then be tested with the Shell
command language and action can be taken based on its value.

Shell facilities

bd

427

The following conventions are used for status codes:

success
command syntax error
some error in processing
system error or insufficent resources wenn ©

You may want to return error codes other than these. In that case, you should -

carefully document the numbers and their meanings.

C: Result codes are returned from C tools as the function result

of the procedure main() or by passing them as the

parameter to the C Library exit function.

Pascal: Pascal programmers must.call the IntEnv procedure [Eexit

to return the status result.

Assembly language: The Integrated Environment routine _RTExit is available to

assembly-language programmers. _RTExit takes the status

code as a parameter.

eee

Restrictions

Tools are similar to desk accessories in that they coexist with another program (the

MPW Shell), and many of the same restrictions apply to tools as to desk accessories.

(See “Writing Your Own Desk Accessories” in the Desk Manager chapter of Inside

Macintosh.) The following sections touch on some of the considerations in

enabling tools to coexist with the Shell.

428 Appendix F: Writing an MPW Tool

Initialization

ge
a

a
a Caution

Since tools run with the Sheil, most Macintosh Toolbox Initialization calls are not necessary and should not be called. in particular, you should not make the following calls:

InitFonts

initWindows

inittMenus

TEInit

InitDialogs

MaxAppizone

SetAppiLlimit

SetGrowZone

InitResources

RsrcZoneinit

ExitToSheil

{Note that this Is not an Inclusive list.)

If your program uses QuickDraw or any routine that uses QuickDraw, be sure to call the InitGraf routine. This routine is necessary when using QuickDraw, because QuickDraw uses register AS-relative global variables, and tools have their own private A5 global area. Even a simple call to the QuickDraw function Random will no work .. properly unless InitGraf is called. .

eee
Memory management

The Shell and tools execute out of the same heap and share the same stack. When a tool is started, the Shell allocates an area in the heap for the tool’s globals and jump table, adjusts the global register AS to point there, and then “calls” the tool. Any dynamic stack Space required is allocated on the same stack, and any heap objects created go into the same heap.

Restrictions 429

High Memory

Shell Globals
@— A5- Globalis (Shell)

@— A6 - Stack Frame Poi

<@—- A7 - Top of Stack

<@—- A5 - Globals (Tool) Tool Globals

System Stuff

Low Memory

Figure F-3
Memory map

When a tool terminates, the Shell restores the registers to their previous values and

deallocates the tool’s global area and any other pointers and handles in the heap that

may have been left allocated. The tool’s resources, however, are not deallocated

immediately. They are unlocked and made purgeable so that the space can be used if

needed. This practice allows for a quick restart of the tool if it is still in memory, but

with no memory wastage penalty should the space be needed for other purposes.

Heap

Because the Shell and tools share the same heap, some cooperation is necessary tO

ensure its efficient use. Before a tool is started, the Shell makes many of its heap

objects unlocked and purgeable. The Shell's memory-resident code is kept as low in

the heap as possible. The tool’s code should be moved as high in the heap as

possible. This is done automatically, if the locked bit is not set on the tool’s code

resources (the default from the Linker). When allocating heap space, tools should

attempt to allocate no more space than is needed so that objects aren't needlessly

purged from the heap.

430 Appendix F: Writing an MPW Tool

When there is insufficient memory space to sun a tool, you can make more space
available in several ways:

u If RAM caching is being used, you can reduce the size of the cache.
e You can free up about 45K by running without the debugger (that is, name it

something other than MacsBug and reboot, or hold down the mouse button while
booting).

a You can minimize the number of windows open when the tool is run. (Certain
memory-resident data structures are required for each window.) Directing
program output to a file instead of a window will also provide the tool with more
memory.

= You can also reduce the stack space by using the Shell resource described in the
next section.

Stack

When the Shell starts up, it immediately grows the heap to its maximum size based on
the maximum stack size. The default maximum dynamic stack size is 10K bytes.
Because some tools may require more siack space or more heap space, 'HEXA!
resource number 128 is available in the Shell to adjust the maximum stack size.
% Note: Because the stack is shared between the Shell and the tool, executing tools

from within nested command files results in less stack space for the tool. The
Shell uses about 100 bytes of stack per nesting level.

a

Windows, graphics, and events
The creation of windows, use of graphics, and event processing by tools is a largely
unexplored area in the MPW environment, MPW aims to support these types of
tools; however, litle work has been done so far in this area, and unknown restrictions
may exist.

Se

Conventions

MPW tocls adhere to a certain style that allows them to work well together in an
integrated fashion:

@ Tools take their inputs as command-line parameters, rather than prompting for
ingui This input style allows their execution to be 2utomated and allows them to
take advantage of the Shell's command-line processing features such as variable
substitution and filename generation.

Conventions 43]

æ Deviations from a tool's standard behavior are specified with command options.

Options may be specified anywhere on the command line and their order is not
significant.

a Tools operate on a list of filename parameters, not just one, allowing the Shell’s
filename generation feature to be exploited.

z When no file parameters are given, tools take their input from standard input and

write their output to standard output. The use of standard I/O allows the piping of
the output of one program into the input of another. For example,

Files | Count <1 .

This command sends the output of the Files command into the input of the Count
command, yielding the number of files and directories in the current directory.

Most tools operate silently as they process their input. Visual feedback is provided
by the spinning cursor. If more feedback is desired, a -p (progress) option is
usually provided to send status and summary information to the diagnostic output.

s Error messages are in the form of Shell comments or are “executable” so that the
error can be easily located. For example, the language translators report errors in
the form

File "Test.c" ; line 25 ### expected: ';' got: name

This message may directly exeauted, to open the file and select the offending line.
(See “Executable Error Messages” in Chapter 3.)

See the “Command Prototype” section at the beginning of Chapter 9 for more
information on MPW command-language conventions.

432 Appendix F: Writing an MPW Tool

This appendix documents the DRVRRuntime libra
writing a desk accessory or
special case of a driver; all of the information in this a

Appendix G

Writing a Desk Accessory or
Other Driver Resource

other driver with the MPW

should already be familiar with the following:
a “Writing Your Own Desk Accessories” in the Desk M

Macintosh

m The Device Manager chapter of Inside Macintosh (for information about 'DRVR'
resources, and so on)

ry and describes the specifics of
system. (A desk accessory is a
ppendix applies to both.) You

anager chapter of Inside

z “Puuing Together a Desk Accessory or Driver” in Chapter 7 of this manual
For information about-the actual routines used in Pascal, C, or assembly language,
see the appropriate MPW language reference manual.

The DRVRRuntime library
Desk accessories have traditional!
because of the peculiar 'DRVR'

following:

@ The library DRVRRuntime.o, which contains the “glue” for seuing up your open,
prime, status, control, and close routines.

Appendix G: Writing a Desk Accessory or Other Driver Resource

y been written in assembly language, partly
resource format used for desk accessories. Setting up

the 'DRVR' layout header, passing register-based procedure parameters, and coping
with the nonstandard exit conventions of the driver routines have made it difficult to
implement desk accessories in higher-level languages. To overcome these difficulties
and simplify the task of writing a desk accessory in Pascal or C, MPW provides the

433

mu The resource type 'DRVW’, declared in {Rincludes}MPWTypes.r. The 'DRVW'

resource is an intermediate form of the 'DRVR' resource, and contains constants

that point to the addresses of the driver routines in DRVRRuntime.o.

The DRVRRuntime library contains a main entry point that overrides the main entry

point in CRuntime.o or in your Pascal or assembly-language source. The

DRVRRuntime entry point contains driver glue that sets up the parameters for you,

calls your routines, and performs the special exit procedure required for a desk

accessory to return control to the system. Your routines perform the actions of the

desk accessory, such as opening a window and responding to mouse clicks in it

The Resource Compiler input (resource description file) for your desk accessory

includes the details of your desk accessory header, such as its driver flags, event

mask, menu ID, and driver name. The driver is built by coercing the intermediate

‘DRVW' resource to a resource of type 'DRVR', which is the format required for desk

accessories. Your resource description file also specifies resources for strings,

windows, and menus, if used in your desk accessory. (For an example of such a

resource description file, see “The Desk Accessory Resource File” in Chapter 7.)

The advantages of using DRVRRuntime.o are the following:

a No assembly-language source code is required.

= The Resource Compiler is an integral step in the build process, permitting the easy

addition of a desk accessory menu or other owned resources.

a The programmer's interface to the open, prime, status, control, and close

routines uses standard calling conventions. Each function returns a result code

which is passed back to the system.

a The DRVRRuntime glue handles the proper exit conventions. (Drivers have

peculiar exit conventions, requiring immediate calls to exit via an RTS instruction,

but non-immediate calls to jump to the IODone routine—these exit procedures

cannot be expressed in C or Pascal.)

Together, the DRVRRuntime library and the 'DRVW' resource form the dispatch

mechanism to your driver routines. The following section describes the structure of

your driver routines.

What your routines need to do

-To write a driver, you need to write five functions named DRVROpen, DRVRPrime,

DRVRStatus, DRVRControl, and DRVRClose.

434 Appendix G: Writing a Desk Accessory or Other Driver Resource

erie

** Pascal note: In Pascal, you'll need to write a unit that declares these five
functions in your interface.

Each of these functions is declared to use Pascal calling conventions, so that the
DRVRRuntime library is available for use by both C and Pascal programmers. (See
the appropriate language reference manual for details.)

The calling sequence for all five driver routines is the same: the parameter ioPB is
the pointer to the drivers I/O parameter block (passed from the system in register
A0), and dCt 1 is the pointer to the driver's device control entry (from. register A1),
The function returns a result code, which DRVRRuntime puts in register DO. This
result code is a Pascal integer (C short). Desk accessories always return a result code
of 0.

For example, the following is the Pascal declaration for your DRVROpen routine:

FUNCTION DRVROpen(ct1lPB: ParmBlkPtr; @CTl: DCtiPtr): OSErr;
Types ParmBlkPtr and DCtPtr are declared in the file OSIntf.p. Type OSEr is an
INTEGER, and is also defined in OSIntf.p.

In C, you would need to write the routines as follows:

Pascal OSErr

DRVROpen (ct1P8,dCt1)

CntrlParam *ctiPB;

DCtlPtr detl;

return (resultCode) ;

}

Types CatrlParam and DCuPtr are declared in the file Devices.h. Type OSErr is a
short, and is defined in Types.h.

Ct RR
raaa

Desk accessories only :

The body of the desk accessory code will reside In your routines DRVROpen,
DRVRControl. and DRVRClose. Your routines DRVRPrime and DRVRStatus are
never called by the system, but the ORVRRuntime library expects them to be
present anyway—they cannot be omitted. It is sufficient to deciare them and
have them simply retum 0.

- :

Programming hints

a

Programming hints

in the current release of MPW, global data is not available for use by desk

accessories. That is, variables declared outside of your functions cannot be used. In

particular, the following language constructs reference the global data area and

cannot be used:

Asm: No DATA directives

Pascal: No UNIT variables

C: No static or extern variables; no string constants

Also note that QuickDraw globals cannot be used directly. Further, you cannot call

library functions that use any of these things. (Look for the Linker message “No global

data was allocated.”)

* Note: Apple is investigating the use of AS-based global variables in desk

accessories. Currently several Macintosh applications contain trap-override or

ROM hook routines that expect AS to point to the application’s globals, but

without saving, setting, and restoring A5 to ensure that this is the case. Such

applications are incompatible with desk accessories that use A5, because the desk

accessory’s calls to the ROM could end up in the application’s trap-override or

hook code.

Typically, C and Pascal programmers will allocate global storage from the heap and

use 'STR#' resources for string constants. If you need to allocate global data from the

heap, you can declare a record containing all of the global variables you need.

Then, in your DRVROpen-routine, you should allocate memory from the heap with

the size of this record, and store its pointer (or handle) in the dCdStorage field of the

device control entry. Then, to reference an element in the record, you can use this

pointer (or handle) to reference the global variable that you want to use.

fe aa ee a a a Re ee rere a ee

Sample desk accessory

A sample desk accessory, Memory, is included in the Examples folders for assembly-

language, C, and Pascal. This desk accessory has the following features:

a it displays the current amount of free space in both the application heap and the

system heap.

w It displays the number of bytes free on the default volume, along with the name of

the default volume.

a it performs these operations every five seconds, so that you can see how your

memory conditions change.

436 Appendix G: Writing a Desk Accessory or Other Driver Resource

For instructions on building this desk accessory, see the Instructions file in the
Examples folder, or refer to “Putting Together a Desk Accessory or Driver’ in
Chapter 7.

Sampie desk accessory 437

Appendix H

Object File Format

Object file format xx.

Notation used in this appendix xx

Object file records xx

Pad record x
First record x

Last record x

Comment record x

Dictionary record x

Module record x

Entry-point record x

Size record x

Contents record x

Reference record x

Computed-reference record x

This appendix is addressed to programmers who are writing compilers or assemblers
to run under MPW.

Object file format

An object file consists of a sequence of object file records. These records are in the
data fork of the file. There are 11 types of object file records:

The first record in the file must be a first record.

One-byte pad records are used to maintain word alignment

Comment records allow comments to be included in the file.

Dictionary records associate names with unique IDs.

Module records define code and data modules.

Entry-point records define entry points in code and data modules.

Size records specify the size of a module.

Contents records specify the contents of a module.

Reference records and computed-reference records specify locations in modules
that contain references to other modules or entry points.

a The last record in the file must be a last record.

A module is a contiguous region.of memory that contains code or static data. (The
jump table is considered to be code.) A module is the smallest unit of memory that is

included or removed by the Linker. An entry point is a location (offset) within a

module. (The module itself is treated as an entry point with offset zero.) A segment is

a named collection of modules.

` All modules, entries, and segments are given a unique, positive, 16-bit ID. An ID is a

file-relative number for a module, an entry point, or a segment, identifying the
module, entry point, or segment within a single object file.

Modules and entry points may be local or external. A local module, entry point, or

segment can be referenced only from within the file where it is defined. An external
module, entry point, or segment can be referenced from different files. In addition

to an ID, each external module or entry point defined or referenced in an object file
must also have a unique name (a string identifier) that identifies it across files. A
module, entry point, or segment without a name is said to be anonymous.

Object file format 439

Names and IDs are specified in dictionary records. Local IDs may be anonymous. cif

no dictionary entry is found for it, an ID is considered anonymous.) Local modules

and entries need not have unique names, and an external segment may have the

same name as an external module or entry point.

At any given point in an object file, there can be one current code module and one
current data module. The beginning of a new code or data module is indicated by a
module record. The current code and data modules are further defined by

entry point, size, contents, reference, and computed-reference records—these

records can occur in any order after the module record. In each of these records, a
flag bit indicates whether the record refers to the code or the data module.

The structure and semantics of each of the record types is defined below.

Notation used in this appendix

Each record type is represented by a diagram such as the following:

DERSEN

differ- 432/16/8 short/ code/

ence long data

7 6 5 4 3 2 1 0

The first box illustrates the record. Each block represents a byte. The first byte
indicates the record type, in this case, 10. The flags byte is expanded in the second

box. The record size is a signed, 16-bit integer that indicates the total length of the

record (including the record type byte, flags byte, and record size field). Hence, any

one object file record is limited to 32K bytes. (This is not a limit on the size of the
module, because partial contents can be placed in several records.)

offsets |

The second box represents the flag bits. In this example, they are interpreted as

follows:

Bit - Meaning

0 0 indicates code, and a 1 indicates data

1,2 must always be 0

3 0 indicates short and a 1 indicates long

440 Appendix H: Object Flle Format

4-5 0 indicates 32 bits, 1 indicates 16 bits, and 2 indicates 8 bits

6 always 0

7 1 indicates a difference computation

* All unspecified bits must be zero.

Object file records
This section defines each of the object file record types.

Pad Record

A pad record is a single byte that is always zero. A pad record follows any record whose length is an odd number of bytes, in order to maintain word alignment. |
(Other than pad records, all records are word-aligned.)

First record

HOERA

The first record in an object file must be a first record.

Object file records 44)

If the nested bit in the flags field is one, then the Linker interprets all references to

undefined ID-name pairs as external references. If the nested bit is zero, the Linker

will try to match the name of an undefined symbol with a local name before treating

the undefined symbol as external.

The version field contains a version number that is 1 for the current definition of the

object file format. j

Last record

The last record in an object file must be a last record.

Comment record

race record size comments |

A comment record allows comments to be included in an object file. It has no effect

on the semantics of the object file.

The record size field specifies the total number of bytes in the record.

Dictionary record

A dictionary record associates a name with an ID (or several names with several IDs).

At most one dictionary record may appear for a given ID ina single object file.

The record size field specifies the total number of bytes in the record.

442 Appendix H: Object File Format

oN

The strings field contains one or more names, each of which is preceded by a length
byte.

The first name in the strings field is associated with the ID given in the frst ID field.

The second name is associated with Ast ID+1, and so on.

The dictionary record for an ID must appear before the module or entry-point
record that defines the iD, but need not appear before reference or computed-

teference records that refer to the ID. If an ID has no dictionary record or has a name

with a length of zero, it’s considered anonymous.

Module record

A module record associates an ID with a module, and makes that module the current

code or data module. All entry-point, size, contents, reference and computed-
reference records help define the current code or data module.

Modules may contain either code or data:

a For code modules, the segment ID field specifies the segment in which the code is
placed. Segments may be named or anonymous. Named segments are treated as

external; anonymous segments are local. (If the segment is named, the dictionary
record specifying the name must appear before the segment ID can be used in a
module record.)

m For data modules, a nonzero size field specifies the size of the module. In this case

size or contents records are unnecessary. (The size of a module can also be

specified by a size record, or implicitly by the offset of the last byte in a contents

record.)

Modules may be either local or external. (Local modules may be anonymous.)

Object file records 443

A code module flagged as main becomes the execution starting point of the

program. A data module flagged as main becomes the main program data area, just

below the location’ pointed to by A5. At most one main code module or entry point

and one main data module may appear in an object file.

References to a module are considered to be references to the first byte of the

module.

Entry-point record

local/ code/
extrnal data

4 3 2 1 0

An entry-point record declares an entry-point ID. The entry point is in the current

code or data module, as indicated by bit 0 of the flags field.

The offset field gives the byte offset of the entry point relative to the beginning of the

module. The offset of an entry point may be outside the module (for example, a

virtual base for an array).

Flags: An entry points may be defined for either a code or a data module. Entry

points may be-either local or external. (Local entry points may be anonymous.) A

code entry point flagged as main becomes the execution starting point of the
program. At most one main code module or entry point may appear in an object

file,

444 Appendix H: Object File Format

Size record

code/
data

A size record specifies the size of the current code or data module. The size is in
bytes. The bytes within a module of size N are numbered 0, 1, ..., M1. The size of a
module may also be specified in a contents record, or (for data modules) in the
module record. If more than one size is specified, the largest size given is taken as the
size of the module.

* Note. In allocating records, the Linker rounds the size of a module up toa
multiple of two, to ensure that modules are word-aligned in memory.

Contents record

Boo

[offset] [repeat] contents

Contents records specify the contents of the current code or data module.

The record size field specifies the total number of bytes in the record.

Object file records 445

Either complete or partial contents may be specified. If partial contents are .

specified, the first four bytes of the contents field specify the byte offset of the

contents from the beginning of the module.

The contents may be either the bytes to be placed in the module, or a 2- pie repeat

count followed by the bytes to be repeated. (If both an offset and a repeat count are

specified, the offset comes first) ̀

Multiple contents records per module are permitted, in any order. The offset of the
last byte for which contents are specified determines the module’s total size. (Size

specifications may also appear in the module record, and in size records—if more _

than one size is specified, the largest size given is taken as the size of the module.)

Reference record

A5- short/ code/

7 6 5 4 3 2 1 0

A reference record specifies a list of references to an ID. The references are from the .
current code or data module, and may be to either code or data.

The record size field specifies the total number of bytes in the record.

The ID field specifies the module or entry point being referenced.

The offsets field specifies a list of byte offsets from the beginning of the current code

or data module. These offsets may be either short (16 bits) or long (32 bits). The

location modified may be either 32 or 16 bits. Multiple references to the same or

overlapping locations are permitted. References from code may indicate instruction

editing (that is, whether an offset is A5- or PC-relative).

References fall into four categories: from code to code, from code to data, from

data to code, and from data to data.

a Code-to-code references: If the 45-relative flag is 1, the A5-relative offset of a

jump-table entry associated with the specified module or entry is added to the

specified location. No instruction editing is performed.

446 Appendix H: Object File Format

If the AS-relative flag is 0, the Linker selects either PC-relative or A5-relative
addressing. The immediately preceding 16-bit word is assumed to contain a JSR,
JMP, LEA, or PEA instruction, and is modified to indicate either PC-relative or
A5-relative addressing. If the referenced module or entry point and the current
code module are in the same segment, the PC-relative offset of the module or
entry point is added to the contents of the specified location. If they are in ;
different segments, the A5-relative offset of a jump-table entry associated with the
specified module or entry is added to the specified location.

In either case, the location may be 32 or 16 bits. (32-bit PC-relative and A5-
relative address modes are available for the 68020, but not for the 68000.)

Code-to-data references: The A5-relative flag must be 1 for code-to-data
references. The A5-relative offset of the specified data module or entry is added to
the contents of the specified location: No instruction editing is performed. The
location may be either 32 or 16 bits. (32-bit AS-relative addressing is available for
the 68020, but not for the 68000.)

Data-to-code references: If the A5-relative flag is 1, the AS-relative offset of 2
jump-table entry is added to the specified location, which may be either 32 or 16
bits. .

If the A5-relative flag is 0, the memory address of a jump-table entry associated
with the specified module or entry is added to the contents of the specified
location, which must be 32 bits. (Note that this requires a run-time operation that
adds the actual value of A5 to the A$-relative offset.)
Data-to-data references: If the AS-relative flag is 1, the AS5-relative offset of the
module or entry is added to the specified location, which may be either 32 or 16
bits.

if the A5-relative flag is 0, the memory address of the specified module or entry is
added to the contents of the specified location, which must be 32 bits. (Note that
this requires a run-time operation that adds the actual value of AS to the
A5-relative offset.)

Computed-reference record

m o foe] ssn | o f

Object file records 447

A computed-reference record specifies a list of computed references based on two

specified IDs.

‘the record size field specifies the total number of bytes in the record. The references

are from the current code or data module, and may be to either code or data.

The IDI and ID2 fields specify the modules or entry points being referenced. If ID1

specifies a code reference, ID2 must also be a code reference in the same

segment—if ID1 is a data reference, ID2 must also be a data reference.

The only computation provided is difference.

The offsets field specifies a list of byte offsets from the beginning of the current code

or data module. These offsets may be either short (16 bits) or long G2 bits). The

location modified may be either 32, 16, or 8 bits (a 0 in bits 4 and 5 indicates 32, 1

indicates 16, and 2 indicates 8).

The value of the address of ID1 minus the address of ID2 is added to the contents of

the specified location. Multiple references to the same or overlapping locations are

permitted.

448 Appendix H: Object File Format

í kas

Appendix |

In Case of Emergency

This appendix contains some information that may be useful when serious system Errors occur.

P

C rashes
If you end up in the debugger (MacsBug) while munning MPW, it may be possible to recover without rebooting and losing your recent changes. The debugger displays the register contents followed by a “>” Prompt. If a tool is being executed, type G STOPTOOL and press Return to retum to the Shell. If the Shell is being executed, type G SYSRECOVER. The Sheil will attempt to recover by aborting the current command, saving the contents of all the windows, and/or returning to the Finder: If either of these steps fails, type ES to return to the Finder, then shut down the system immediately.

> E
o St ack space

The MPW Shell and tools that run integrated with the Shell share a single stack. The Stack size is determined by the Shell at initialization time. Complex command files, large links, and other tools may require more stack space than is available. System errors 28, 2, and 3 are possible indications of this problem. You can increase the Stack size by using ResEdit to modify the only 'HEXA' resource in the file MPW Sheil. The default size is $2710 (10,000 bytes). Doubling this to $4E20 (20,000 bytes) has been sufficient for the largest cases we've seen. :
* Note: Increasing the stack size on a Macintosh 512K may create other problems because of decreased heap space.

|
Glossary

active window: The frontmost window. The

Shell variable {Active} always contains the name

of the current active window.

alias: An alternate name for a command,
` defined with the Alias command.

application:. A program that runs stand-alone,
outside of the Shell environment. An
application’s file type is APPL.

blank: A space or a tab character (in the context
of separating words in the command language).

build commands: Shell commands that are

output by the Make tool, used to-build a program.

built-in commands: Editing commands,
structured commands, and other Shell

commands that are part of the MPW Shell
application (as opposed to MPW tools, which are
separate files on-the disk.)

code resource: A resource that contains a
program’s code—most commonly a resource of
type 'CODE!' (for applications and MPW tools),
but other resource types such as 'DRVR' and
'PDEF' also contain’code. ©

command file: An ordinary text file (type
TEXT) containing a series of commands. The

enire file can be executed by entering the

filename. Also called a script.

command name: The first word of a

command, identifying the name of a built-in
command or the name of a file (tool, command

file, or application) to execute.

command substitution: The replacement of a
command by its output. Command substitution

takes place within back quotes C ...`).

current selection: The currently selected text
in a window. In editing commands, the current
selection in the target window is represented by

the § metacharacter.

data fork: The part of a file that contains data
accessed via the Macintosh File Manager.

dependency file: A makefile. |

desk accessory: A “mini-application,”
implemented as a device driver, that can be run at
the same time as an application. Desk accessories
are files of type DFIL and creator DMOV, and are
installed by using the Font/DA Mover.

device driver: A program that controls the
exchange of information between an application

and a .device..

diagnostic output: Commands and tools send

error output to diagnostic output (by default, the
active window). You can redirect diagnosuc

output.to another file, window, or selection with

the 2 and’ 22 ‘operators.

escape character: The Shell escape character is
2 (Option-D), It is used to disable (or “escape”)
the special meaning of the character following it,
to continue commands over more than one line
(AReturn), and to insert invisible characters into
command text.

external reference: A reference.to a routine or
variable defined in a separate compilation or
assembly,

filename: A sequence of up to 31 printing
characters (excluding colons), which identifies a
file. More at pathname.

file type: A four-character sequence, specified
when a file is created, that identifies the type of
file. (Examples: TEXT, APPL, MPST.)

Finder information: Information that the
Finder provides to an application upon Starting it,
telling it which documents to Open or print.
Font/DA Mover: An application, available on
the System Tools disk, used for installing desk
accessories in the System file.

HES: “Hierarchical File System*: used on 800K
disks and the Apple Hard Disk 20.

insertion point: An empty selection range; that
is, the character position where text will be
inserted (marked with a blinking vertical bar),
interface routine: A routine called from Pascal
whose purpose is to trap to 2 certain ROM or
library routine. i

jump table: A table that contains one entry for -
every routine in an application or MPW tool, and
is the means by which the loading and unloading
of segments is implemented.

main segment: The segment containing the
main program.

makefile: A file used by the Make command,
which describes dependencies between the
variOus pieces of a program,:and contains a set of
commands for building up-to-date files. The
default makefile is named MakeFile.

MPW Shell: The application that provides the
environment within which the other parts of the
Macintosh Programmer's Workshop operate, The
Shell combines an editor, command interpreter,
and built-in commands.

MPW tool: An executable program (type MPST)
that is integrated with the MPW Shell environment
(contrasted with an application, which runs
stand-alone).

non-HFS: The“flat” file system, used on 400K
disks and Macintosh XL hard disks: ~

option: A command-line switch, specifying
some variation from a command's default
behavior. Options always begin with a dash (-).
pathname: A sequence of up to 255 characters’
that identifies a file or directory. A full pathname
is 2 pathname that contains embedded colons but
no leading colon. A partial pathname either
contains no colons or has a leading colon.
pattern: A literal text pattern (such as
/ABCDEFG/), or a regular expression.
Patterns are a case of selection, and always
appear between the pattern delimiters /.../ or
Vaca i ;

pipe: The command terminator | is the Pipe Cor
pipeline) symbol. It causes the output of the
preceding command to be used as the input for
the subsequent command. (See. Chapter 3,
Table 3-1.) a

position: In editing commands, position refers
to the location of the insertion point

- prefix: The directory portion of a filename.

quotes: A set of characters that literalize the
enclosed characters, used for disabling special
characters. The quote symbols are '... sart
and /.../. The escape character, 3, quotes the
character that follows it. `

t Te n
'

regular expressions: A language for specifying
text patterns, using a special set of
metacharacters. (See Appendix B, Table B-2.)

Glossary 45]

resource: Data or code stored in a resource

file and managed by the Macintosh Resource

Manager.

resource attribute: One of several

characteristics, specified by- bits in a resource

reference, that determine how the resource

should be dealt with.

resource compiler: A program that creates

resources from a textual description. The MPW

Resource Compiler is named Rez.

_resource description file: A text file that can

be read by the Resource Compiler and compiled

into a resource file. The Resource Decompiler

disassembles a resource file, producing 4

resource description file as output

resource file: Common usage for the resource

fork of a Macintosh file.

resource fork: The part of a file that contains

data used by an application, such as menus,

fonts, and icons. An executable file’s code is also

stored in the resource fork.

script: A command file.

segment: One of several parts into which the

code of an application may be divided. Not all

segments need to be in memory at the same time.

selection: A series of characters, or a character

position,.at which. the next editing operation will

occur. Selected characters are inversely

highlighted in the active window, and outlined in
other windows. A Selection is used as an argument

to most editing commands, and can be specified

by using a special set of selection’ operators. (See

Appendix B, Table B-1.)

standard error: Diagnostic output.

Startup file: A special command file containing

commands that are executed each time the Shell

is launched. Startup executes a second command

file called UserStartup.

452 Glossary

status value: A code retumed by commands in

the Shell variable {Status}. Zero indicates

successful completion of the previous command,

and other values usually indicate an error.

target selection: The current selection in the

target window, represented by the § character.

target window: The second window from the

top—this is the default target for editing

commands that are entered in the active

window. The Shell variable (Target! always

contains the name of the current target window.

tool An MPW tool

word: A single, blank-separated element in a

command. A command name and each of its

parameters are separate words in the command

language.

no,

MPW & MacApp Bug Report Form
BACKGROUND

Date Version

AREA: Compiler: c Pascal

Assembler

Library: C Pascal Assembly

MacApp

Shell/Editor

Tool
SS eg ee a

Performance l

BUG DESCRIPTION | |

CONTACT INFORMATION eee ee

Name: | - Phone/Ext.. o.

Address:
S yp SSS se S

City, State, Zip

Please return completed form to:
MPW Bug Report; MS 27S; Apple Computer, Inc.; 20525 Mariani Ave.; Cupertino, CA 95014

